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1. INTRODUCTION

This report describes CHI Systems’ model development effort as part of the initial model
comparison process of the Agent-based Modeling and Behavioral Representation (AMBR)
program being conducted by the Air Force Research Laboratory. CHI Systems developed its
model of human multi-tasking behavior using the COGNET integrative executable cognitive
architecture and iGEN™ model development environment. The example problem environment
in which all AMBR models in this comparison cycle were executed is a simplified Air Traffic
Control (ATC) environment, developed by an independent moderator contractor, BBN Systems
and Technologies, Inc. The task and simulator are described in separate reports by BBN. The
moderator contractor also collected human performance data from live subjects as a point of

comparison for model performance. The data collection and results are also discussed in a
separate report by BBN. :

1.1 Theories and Models

Before discussing either COGNET or the ATC model in more detail, it is useful to situate
COGNET in the broader framework of cognitive modeling/simulation research, so that its goals
and origins can be more clearly understood. We begin by contrasting the notion of theory and
model. ‘Theory’ can be defined as a body of general principles and/or abstractions, formal or
otherwise, about the world (both phenomenal and epistemic). Theory formation, then, is a
process of creating such abstractions and principles, without any inherent linkage to any specific
purpose. It is simply the construction of a narrative on the universe. In contrast, a ‘model’ can
be defined as a specific representation of some set of phenomena’ that attempts to recreate or
predict some aspect of those phenomena for a specific purpose. Model-building is thus viewed
as an inherently purposive process, one undertaken to support a specific end or to answer a
specific question, such as ‘how should this device be engineered?’ or ‘how might this building
aesthetically change the neighborhood?” or even ‘how predictive or parsimonious is a specific
psychological theory?’ Thus, representing a city as a point in a directed graph model may be
completely adequate for the purpose of calculating the optimal travel time of a multi-city trip (as
in the so-called ‘traveling salesman’ problem), but completely inadequate for the purposes of

actually traveling to that city (for which a different type of model — the road map ~ would be
better), and vice versa.

When viewed in this way, models are all simplifying representations of the phenomena they
address. Why? If they did not somehow simplify the phenomena, the purposes might just as
well be addressed by experimentation — interaction with the phenomena directly. This leads to
the propositipn that all models are as-if models, filled with simplifying assumptions (which in
the best case:are all explicit and deliberate). That is, they attempt to predict or recreate the first
order phenomenon as if it were equivalent to the simplified representation inherent in the model.

! The term phenomena is somewhat misused in the following discussions, in that it is intended to include
- physically sense-able information (the usual denotation) but also epistemic information such as knowledge and
feelings which rely on consciousness rather than sensation. The reasons for this should be obvious. The model

being presented here is both phenomenological (predicting behavior) and epistemological (predicting knowledge
use). - :




Divergences between the model and the denotata of the model help identify the benefits or
limitations of such simplifications, given the purpose of the model. In this way, model-building
can be used as a way of wielding Occam's Razor, by providing a link between the level of
parsimony of a representation and its usefulness.

On the other hand, the fact that models are inherently simplifying, as-if representations,
means that the phenomena they represent are always more complex than the models themselves.
When a model is used to embody a theory, there is a tension between modeling in the purposive
sense (which strives for parsimony) and theory development (which strives for completeness).
This can create a kind of ‘slippery slope’, where additional detail is added to the model (or better
put, simplifications are removed) because the process creates a more direct correspondence with
the phenomena being modeled. The result, however, can be a representation that is called a
model but which has no specific purpose, and which may not stand up to Occam’s Razor when it
is used for a specific purpose. For example, a model of the unique cellular physiology of the
heart muscle may be more complete in many senses than a model which represents the heart as
pair of interconnected pumps, yet for the purpose of predicting the rate and quantity of flow of
blood to the lungs, the latter may be a much more effective and parsimonious representation.

This sets the stage for a brief description of the COGNET framework. COGNET was created
as a method or framework for building models of human information processing for a range of
specific purposes (which has grown over time). These purposes include design/analysis of
person-machine interfaces and human work tasks, performance diagnosis in intelligent training
systems, decision-support and performance-support in real-time computer-based work
environments, and simulation of human behavior and performance, the purpose in this project.
These purposes are all quite distinct, and ultimately require different kinds of models of human
information processing. Not as different, perhaps, as the map and the connected graph
mentioned earlier, but different nonetheless in the level of detail and types of structures,
processes, and output information required. As new COGNET-based models have been built, a
deliberate effort has been made to identify a structure that allows common features to be
identified and retained in the framework, and points of difference to be identified and ‘left open’
so as to not constrain future model-building efforts. This process has been motivated by theory,
ideally in the sense noted above: to identify useful simplifying assumptions and boundary
conditions of the known assumptions. COGNET does not attempt, however, to either capture or
represent any unified theory of human thought or behavior, though (we believe) it could be used
to both express and test such theories at some level. At the same time, the structure of COGNET
has been driven by pragmatics and experience, providing a framework in which (purposive)
models can be constructed easily and efficiently by individuals not necessarily expert in theories
of human cognition.

1.2 Overview of Approach and Report

Our approach to creating a model for the AMBR ATC task can be viewed in light of the
discussion of theories and models above—it was to create a model that could carry out the ATC-
like task posed in a human-like manner at the level of strategy or function. Further detail in
lower-level operations would be added as necessary to allow the model to generate the behavior
required. The COGNET framework provided the underlying cognitive architecture and
Principles of Operation for the model. The COGNET framework and associated iGEN™
development tools are described in Section 2.




We created two models, one for each of the fly-off conditions: text (unaided) and color
(aided). These models were actually just variations of each other. Our models represented one
generic individual; that is, they produced a generic individual’s performance rather than a range
of performance over multiple runs. Each model adjusted dynamically to workload within
conditions. The modeling approach is described in more detail in Section 3.1. The model itself
is discussed in Section 3.2, followed by a short description of the model development process
(Section 3.3). At the end of each model run, the model output the six subjective workload

measures requested based on ‘introspection of its cognitive processes.” The subjective workload
assessment measures are described in Section 3.4.

Model results and our evaluation of the model development and competition processes are
discussed in Section 4. General conclusions follow in Section 5.

2. COGNET/IGEN™ FRAMEWORK

COGNET is a model of human information processing that is based on an explicit
decomposition of the phenomena involved. This decomposition is reflected in the metaphorical
‘equation’ shown in [1], which is analogous to the equation used by Card, Moran, and Newell to
decompose human-computer interaction (1983:p. 27). The focus of this equation is competence,
in the sense it is used by linguists, that is, the ability of a person to construct appropriate

behaviors in a specific context, unburdened by various constraining factors of performance or
pragmatics. ‘

[1] Individual Competence‘= processing mechanisms +
internal expertise +

context

In the decomposition given in [1], competent problem-solving emerges from the
manipulation of a body of internal expertise by a set of (presumably biological) internal
information processing mechanisms, as required by the features of and interactions with the
external context of the behavior. The effect of the external situation is critically important in this

_equation. It provides the details and data from which the work goals are identified and activated,
and in pursuit of which expertise is activated, retrieved, and manipulated. :

The relationships in [1] indicate how human information processing could be decomposed
(and represented) if one wanted to capture and predict, under essentially perfect circumstances,
the kinds of problem-solving situations for which a person was competent. The analogy to
linguistics can clarify this notion. Linguistic competence refers to the ability of a person to -
understand and produce completely correct, fully formed meaningful utterances in a speech
context. Thus, problem-solving competence refers to the ability of the person to understand a
situation and produce appropriate, well-structured, interpretable, and goal-based behaviors as
that situation unfolds. But just as most people rarely speak in completely correct, fully-formed
sentences, so it is that individual problem-solvers seldom produce fully correct and optimal
behaviors in any real world context. Even when the person has complete competence, in the
sense of complete expertise, fully functioning processing mechanisms, and full access to the .
environment, other factors can cause actual behavior, which is termed performance, to deviate




from pure competence. These include factors of timing — the fact that processing mechanisms
can require non-zero amounts of time to accomplish various functions — and accuracy — the fact
that these mechanisms can function in a way that may sometimes deviate from the ideal. These
effects are seen in COGNET as further constraints upon the model of problem solving
competence, as shown in [2].

[2] Individual Performance = processing mechanisms +
internal expertise +
external context +

time + accuracy

The decomposition in [2] provided the starting point for the AMBR project, and led to the
use of a variant of the COGNET framework and associated software based on that
decomposition. This variant is currently being developed under separate sponsorship, with the
goal of providing a better means to create and simulate computer-generated forces or CGFs.
Appropriately enough, this variant is termed CGF-COGNET, and the discussion that follows
applies specifically to it. However, the ‘core’ COGNET and the CGF-COGNET variant are
highly similar in their representation of both internal processing mechanisms and internal
expertise. The main differences are that the CGF-COGNET model and software contain added
structure that supports, either directly or infrastructurally, the representation of timing and
accuracy effects.

The decomposition in [2] provides a structural framework for the CGF-COGNET system.
The competence level consists of representations of the internal processing mechanisms, and of
the internal expertise. The external context is defined on a domain-specific basis. The
performance level adds additional constraining and limiting factors to these components,
particularly to the internal components — the processing mechanisms and the expertise. This
framework is used below to describe the CGF-COGNET system. The processing mechanisms
are discussed in 2.1, the internal expertise is discussed in 2.2, as is the representation of and
connection to the external environment. The various types of models that can be developed
using the COGNET framework are discussed in 2.3.

All variants of the COGNET system (including CGF-COGNET) are embodied in a software
environment called iGEN™. This software environment provides a number of tools, which
allow domain-specific COGNET models to be built and executed, and interfaces which allow a

domain-specific model to dynamically interact with a (real or simulated) external environment.
iGEN™ and its relation to COGNET are discussed in 2.4 below.

2.1 Information Processing Mechanisms in CGF-COGNET

The CGF-COGNET information processing mechanisms can be defined in terms of their
structure, (i.e., what the mechanisms are and how they are interconnected), and their function
(i.e., what they do and the principles by which they operate). These are discussed below,
following a brief overview of the theoretical and intellectual foundations of the COGNET
framework.




2.1.1 Background and Foundation

The distinction between processing mechanisms and the information being processed has a
long history in computer science, going back at least to Turing (1950) and his notion of an
abstract computational device. In the last half century, the ability of physical computational
devices to create behavior that historically was considered to require human intelligence has
given rise to a computer metaphor of mind. Using the terms of the introduction, this metaphor is
really an as-if model, in which the cognitive phenomena are approached and analyzed as if they
worked like some complex computational device, the structure and principles of which have yet
to be discovered. Most researchers following this avenue of approach have certainly not asserted
that the mind was a computer, but that it could be productively studied as if it were (many

sources, for example Hofstadter, 1979, Pylyshyn, 1985, and Newell, 1990, have elaborated on
this concept in varying ways).

The COGNET framework definitely arises from within this tradition, and thus separates its
representation of postulated internal information mechanisms from its representation of the
information on which those mechanisms operate. However, it is presumed that these two have a
‘hand in glove’ relationship, in which the information is organized and structured in a way that
optimizes, or at least facilitates, its processing by the underlying mechanisms.?

The overall architecture of the COGNET processing mechanism follows a well-established
cognitivist breakdown along the lines established by Broadbent (1958), Card, Moran and Newell
(1983), and Newell (1990), among others. It postulates fully parallel perceptual, motor and
cognitive sub-systems, with the cognitive and perceptual sub-systems sharing independent access
to a memory structure. The memory construct in the underlying COGNET framework is a long-
term working memory structure, which subsumes operations that have been ascribed inthe
literature to short term, long term and working memory. Ericcson and Kintsch (1995) argue for
this type of organization from empirical data, while McGaugh (2000) supports similar arguments
from an essentially neurophysiological perspective. Here again, the as-if nature of the COGNET
model needs to be noted. COGNET does not presume that short-term and long-term memory
differences do not exist, but merely that cognitive processes can be modeled without these
distinctions. Ideally, analysis of the resulting models can shed light on when and where such
constructs are needed to achieve specific modeling goals.

The Principles of Operation of these architectural components have been derived from a
number of more detailed theories and models, largely based on the purposes for which the
framework was designed. As noted in Section 1, models (unlike theories) are constructed for
specific purposes, and COGNET was developed for application-oriented purposes. Specifically,
it was developed to support the description, prediction, and incorporation of expert-level

? The reasoning for this is evolutionary in nature, and briefly summarized as follows. The mechanisms, as
biologically based, are subject to evolutionary processes at the population level. Internal information, however, is
acquired during the individual’s lifespan, and individuals learn to represent and organize knowledge in a way that is
easy (and effective and efficient to process) across their lifespan. Thus, expert-level knowledge is likely to reflect
the structures of the underlying processing mechanisms, at least to the degree that the individual is aware of them.
Normally, individual level knowledge is lost upon death, removing it from the scope of biological evolutionary
mechanisms. Human culture, however, mediates this process by providing a repository of structures (and content)

that have some survival value across the lifespan of individuals and are exposed to a more diffuse cultural
evolutionary process.




competence in complex real-time, multi-tasking, work environments. These work environments
are frequently encountered in manufacturing, medical, aerospace, and telecommunications
contexts (among others), where the value of improved processes and tools is high. In other
words, COGNET was created to address difficult problems in high-payoff application
environments. This overall purpose led to several specific characteristics of the system, as
discussed below.

Time granularity — the nature of the complex work environments which COGNET seeks to
address unfold over periods of time which range from second to hours. This places them in what
Newell (1990) called the ‘rational band’ and the upper portions of the ‘cognitive’ band of
temporal granularity (ibid., Figure 3-3). COGNET focuses on this range of granularity,
eschewing constructs which operate at coarser and (particularly) finer levels of granularity,
assuming that they are either too large or too small to have a direct influence on processes within
the focused range. Here again, this is an as-if assumption, allowing the phenomena within the

- range of interest to be modeled as if they were independent of the lower and higher level
processes and structures. It is likely, in fact, that near certain boundary conditions this
assumption may not hold, but identification of these boundary regions is also a useful activity.

Attention — the focus on representation and prediction in complex multi-tasking environments
forces COGNET to deal explicitly with competing demands for action and competing
opportunities to gain information, as well as constraints from the external environment on what
can be done (time sequencing in external environment). Thus attention and the forces, which
shape it, have been central concerns within COGNET from the beginning. There are two main
concepts behind the COGNET approach to attention. The first is the notion of weak
concurrence, which assumes that a person can actively pursue only one (high-level) goal at a
time, although there can be many threads of goal-pursuing activity that are active at any one
time. These threads may represent interrupted lines of reasoning, temporarily suspended ones, or
even goals that the person knows are relevant but have not yet been activated. The fact that
multiple lines of reasoning are being pursued simultaneously makes the process concurrent, but
the fact that only one of these is being actively pursued makes it weakly so. The second concept
underlying attention in COGNET is the notion that attention emerges from primarily cognitive
processes, rather than existing as a separate executive process itself. The basis for this is the
lengthy discussion in the literature during the 1960s through the 1970s, in which it was
eventually realized that an explicit attention process required some higher level executive
process to manage it, and that this regress could continue ad infinitum. The fundamental concept
of attention, which COGNET has incorporated and greatly elaborated, is the Pandemonium
model first proposed by Selfridge (1959), which provides a representation of attention that is
both weakly concurrent and emergent.

Embodiment — The need to represent the human role in complex environments has required
COGNET to consider explicitly the physical mechanisms which link perceptual/action processes
to the external environment. These physical mechanisms force COGNET to be an embodied
cognition system (Gray & Boehm-Davis, in press), in which the interaction with the external
environment affects internal processes in a fundamental and on-going way. In CGF-COGNET
these interactions have become even more important drivers of the overall system performance.
However, the time granularity of the overall system (seconds to hours) is to some degree
inconsistent with the time granularity at which many of the effects of embodiment occur
(microseconds to seconds). Thus, COGNET has adopted a granularity-neutral stance with regard




to embodiment, allowing the modeler to incorporate constraints and features of the physical
systems to the degree necessary and appropriate for the specific application. This is in contrast
to systems such as EPIC, for example, which adopt a fixed (and relatively fine) granularity for
the structure and processes of the embodiments of the system. The CGF-COGNET variant
nonetheless seeks to more explicitly capture the constraining effects of embodiment. To permit
~ this in a granularity flexible manner (in which there would be no fixed models of body features),
the performance prediction approach of micromodels was adopted. This approach, which ,
originated with the Human Operator Simulator (HOS) system of the 1970s (Lane, Strieb, Glenn,
and Wherry, 1981), uses closed form approximations of the time and/or accuracy constraints of
specific physical instrumentalities in specific types of contexts (e.g., accuracy of reading
characters of text; time to fingertip-touch an object within the current reach envelope, etc.).
These micromodels allow existing experimental data and empirical relationships to be

encapsulated and reused, but do not force any specific level of representation of body features in
CGF-COGNET.

Expert-oriented knowledge structure — The COGNET focus on expert-level competence and
performance in complex environments led to the representation of internal information in a
- manner as similar as possible to that used by human experts. In turn, this led to the incorporation
of theories of expertise and expert knowledge structures that emphasized the efficiency and
parsimony of expert decision processes, particularly in the real-time contexts where COGNET is
. focused. These theories (see Chi, Glaser and Farr, 1988; Ericcson and Smith, 1991; Hoffman,
1992), suggest that experts use highly compiled knowledge structures that minimize the process
‘of searching complex knowledge spaces. These theories meshed with the notions of recognition
primed decision—making, first suggested by Klein (1989), and the artificial intelligence concept
of case-based reasoning (Kolodner, 1988). Although deriving from very different bodies of data,
both of these suggested that context cues based on internal models of the external situation,
allowed these compiled knowledge structures to be activated on a just-in-time basis in real-time
settings. COGNET ultimately chose to incorporate all these concepts in its framework for
representing the internal information or expertise held by the expert.

The various influences that shaped the COGNET representation of information processing
mechanisms are summarized in Figure 2-1. The COGNET Principles of Operation derive from
these general influences, as do the details of the internal mechanisms and architecture of
COGNET and CGF-COGNET. Both are reviewed in the subsections that follow. While the
Principles of Operation apply equally to COGNET and the CGF-COGNET variant, the

information processing mechanisms differ between the two; the CGF-COGNET variant is
primarily discussed below.

2.12 CGF-COGNET ancmles of Information Processing Operation

- The structure and processing ef information in the COGNET system is based on a series of

Principles of Operation, which are listed in Table 2-1 below. Each principle is discussed in more
detail in the following subsections.

2.1.2.1 Attention Focus Principle

The attention focus principle simply states one aspect of the concept of weak concurrence, by
- specifying that only one unit of procedural (goal-directed) knowledge can be active at a time. It
also defines two properties of this unit of cognitive process execution:
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e that it represents a chunk (rather than an atomic unit) of procedural knowledge,
and that the unit is called a cognitive task, and

o that it can be in (at least) two different states — executing, and non-executing (the
latter of which actually encompasses several different states, for reasons that will
become clear later)

Thus, this principle begins (and others will follow) the process of defining the form of the
internal information that is processed by the system. In particular, the notion that procedural
knowledge is chunked into large units and executed in these units is consistent with the
underlying models of expert decision processes discussed above.

2.1.2.2 Pattern-Based Attention Demand Principle

This next principle, as well as the following two, provides more definition for the way
attention operates within COGNET and how knowledge is structured to fit within this process.
To begin with, it defines a relationship between declarative information and procedural
information. Specifically, it states that some combination or pattern of information in memory,
simply by virtue of its existénce, can result in a procedural chunk (i:e., cognitive task) changing
its state from inactive to a new state that is termed active. The pattern or condition that causes
this activation is incorporated within the cognitive task itself, and is termed the trigger. In a real
sense, then, the trigger is actually a piece of metacognitive knowledge that ‘wraps’ the
procedural chunk. Although it does not say it explicitly, the pattern-based attention demand
principle implies that the process of comparing the trigger to the contents of memory is
something that is done within the processing mechanism itself, as part of the cognitive process.
In addition, this activation of large procedural knowledge chunks on the basis of broad patterns
or contexts are a realization of the concepts of recognition primed decision-making and case-
based reasoning discussed earlier.



Table 2-1. COGNET Principles of Operation

Principle name

Definition

Attention Focus

At any point, the cognitive process is executing, at most, one chunk of
procedural knowledge, called a cognitive task. The executing

cognitive task is said to have the focus of attention of the cognitive
process.

Pattern-based
Attention Demand

Each cognitive task includes a trigger condition to determine if it is
relevant to the internal understanding of the external world, as
maintained in memory. Only when the trigger condition is met does
the task become active and vie for attention. ‘

Attention Capture

‘Each cognitive task includes a measure of its relative priority, which

is evaluated based on the contents of memory when the task is
activated. An activated cognitive task will capture the focus of -
attention if its priority exceeds those of all other active cognitive tasks.

Task Interruption

An executing cognitive task that loses the focus of attention through

Attention Capture has been interrupted and continues to compete for
attention.

Cognitive Process
Memory Modification

Cognitive apératsrs within cognitive tasks can change the state of
memory when they are executed.

Perceptual Process
Memory Modification

Self-activating perceptual knowledge sources called demons change
the state of memory when executed by the perceptual process.

Multiple Cognitive
Task Instances

A cognitive task may be activated for execution in the context of a
specific piece or configuration of knowledge in memory, which is
called its scope. Such a cognitive task may have multiple active
instances, with each instance reflecting a unique instance scope.

Multiple cognitive task instances compete for attention as if they were
individual cognitive tasks. :

Task Suspension

A task may relinquish attention, based on task knowledge and the state
of memory. Upon such suspension, all remaining active tasks vie for
attention. The suspended task sets a resumption condition that

determines when it will be reactivated and resume competing for
attention.

_ Iniits active state, the principle further specifies, the cognitive task is vying for the focus of
attention. This, in turn, implies that such an activated task does not have the focus of attention,
yet it also is not inactive. Thus, this defines a third state of a cognitive task, besides executing
and inactive, termed 'active’. The process of attention can now be defined as the process by

which tasks move from inactive to active to executing (and ultimately back again). The current
~ principle only deals with the first half of this cycle, showing how a cognitive task moves from an
inactive state to an active state (i.e., by its trigger being satisfied by the contents of memory).




2.1.2.3 Attention Capture Principle

This principle defines the other half of the attention process, that is, the mechanisms by
which the focus of attention is allocated (and execution begins). The Attention Capture Principle
clarifies this by introducing another metacognitive construct, the notion of a momentary priority
of an activated task. Like the trigger, the priority is based on the information in memory at the
current time. This suggests that the priority will vary as the contents of memory vary, an
observation that applies to the trigger as well. Thus as memory changes (later principles will
specify how that happens), a trigger may become ‘unsatisfied’ and the task inactive once again.
Similarly, the priority may vary up and down as the contents of memory changes. When
combined, the trigger and priority behave like the ‘shrieking demons’ in Selfridge’s
Pandemonium model. As with the previous principle, the Attention Capture Principle suggests
but does not explicitly state that the process of evaluating the priority (constantly) and changing
the focus of attention when some cognitive task’s priority exceeds that of the executing task is
organic to the cognitive process itself. Given that this is the case, however, the result is that
attention emerges from the interaction of the changing memory contents and the metacognitive
knowledge encoded in the triggers and priorities.

2.1.2.4 Task Interruption Principle

The previous principles leave unanswered the question of what happens to an executing
cognitive task when another activated task captures the focus of attention before the first chunk
of procedural knowledge has completely executed. This question is answered by the Task
Interruption Principle, which adds yet another state that procedural knowledge chunks may
assume — interrupted. It states that a task procedural chunk, which has lost the focus of attention,
is in an interrupted state in which it continues to compete for attention. It is implied by the
Pattern-based Attention Demand principle that this competition will continue only so long as the
associated trigger is satisfied by information in memory. Similarly, the Attention Capture
principle implies that the priority of the interrupted task may continue to change as the priority
measure changes as information in memory changes. Thus, the interrupted task may regain the
focus of attention if at some future time its priority exceeds that of the currently executing task.
It may also re-gain the focus of attention if the currently executing task completes execution and
the interrupted task is the only activated task or the activated task with the highest priority.

The Task Interruption Principle does not define what happens when an interrupted task
resumes execution. In the standard COGNET system, the task will resume at the point where it
was interrupted. This can, however, create problems in situations where the external world (and
the internal representation of it) has changed substantially while the task was interrupted. As
discussed in 2.2.2 below, metacognitive mechanisms have been incorporated into CGF-
COGNET to'support a richer set of means for adapting to recovery from such conditions when
interruption and subsequent resumption occur.

2.1.2.5 Cognitive Process Memory Modification Principle

The previous three principles detail the relationship between the dynamics of memory and
the attention process in COGNET. Specifically, they show how changes in memory can cause
triggers to activate and deactivate procedural knowledge chunks, and how priority measures lead
to some of these chunks gaining, and sometimes losing, the focus of attention. They do not
discuss, however, the means by which memory can change in COGNET.
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The Cognitive Process Memory Modification principle begins by defining a unit of
procedural knowledge within the cognitive task. This unit is called a cognitive operator. The
principle also states that this lower level unit of procedural knowledge can, when executed by the
cognitive processor, modify the contents of memory in some way. The principle implies that
there can be more than one of these cognitive operators within a cognitive task, but does not
define any additional details of the lower level components of cognitive tasks. In general, the

changes in memory can be seen as the result of inferences of various sorts that are defined by the
content of the procedural knowledge itself.

Although this principle is very simple, its implications are substantial for the system. On the
surface it simply states that a cognitive task can alter memory during its execution. However,
given the linkage between memory contents (and more precisely memory dynamics) and
attention, this principle indicates that the attention dynamics are driven by the execution of
cognitive tasks (although not exclusively so, as shown by the next principle). Thus, a chunk of
procedural knowledge may, in the course of its execution, create changes in memory which may
in turn lead to other tasks becoming activated and/or lead to changes in priority measures of
activate tasks that cause them to capture the focus of attention. '

This principle therefore creates openness in the attention process, allowing any procedural
chunk to make changes in memory that can allow any other chunk of procedural knowledge to
become activated and/or to capture attention. The principle also provides a de facto granularity
for the attention process. Because memory can be changed only as result of execution of
cognitive operators within cognitive tasks, this means that changes in the focus of attention can
only occur after execution of a cognitive operator.

2.1.2.6 Perceptual Process Memory Modification Prz'ncipfe

The previous principle showed how cognitive processing can result in memory changes,
driving the attention process forward in complex ways. Still, this process is in some sense
closed, as memory can only be modified (thus far) by internal processes that are finite knowledge
sources. Thus, even if there is some stochasticity in their contents, the possible set of changes
and dynamics that can occur are bounded. More important, however, is the fact that it leaves
memory, and therefore the cognitive subsystem, disconnected from the external world. This
problem is resolved by the Perceptual Process Memory Modification Principle, which shows
how the perceptual subsystem injects information that has been perceived about the external

~world.

This principle defines an entirely new type of procedural knowledge, called the 'demon.'
This unit of procedural knowledge is executed by the perceptual process rather than by the
cognitive processor. (As a result, the unit is sometimes called a 'perceptual demon' rather than
simply a demon). A key property of this unit of internal information is that it is self-activating,
in response to a specific sensory cue. Thus, there is no attention process within the perceptual
subsystem as there is within the cognitive subsystem. Rather, information is sensed and this
sensation process (which can be thought of as registering external cues inside the system) leads

organically to the activation and execution of perceptual demons that are able to process the
information. '

The principle also specifies what these units of procedural knowledge do when they are
executed — they modify the contents of memory. It does not indicate whether there are any
limitations to how many demons can be activated and executed within any perceptual processor
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cycle, nor whether there are any limitations to how many modifications to memory can be made
in any time or cycle interval. In other words, there is no inherent bandwidth limitation to the
perceptual process in COGNET. However, human sensory and perceptual limitations do create
bandwidth constraints, and the CGF-COGNET variant therefore does provide some facility to
represent these limitations (see 2.1.3.1 and 2.2.4 below).

This principle complements the previous principle in showing a second way in which
memory can be modified, i.e., as a result of information sensed and perceived from the external
world. This adds much more complexity and openness to the dynamics of the information
process, allowing flows in the focus of attention that can be driven either from reasoning
processes (i.e., from memory changes resulting from cognitive operators) or from environmental
perceptions (i.e., from perceptual demons). The latter type, in particular, allows for very abrupt
changes in the focus of attention. For example, unexpected environmental information, such as
hearing an alarm, can lead to abrupt shifts in attention to very different cognitive tasks.

This principle does not address any differences in time granularity between the perceptual
and cognitive processes. While the previous principle implicitly set the granularity of
cognitively-driven attention flows at the level of the execution of individual cognitive operators,
the present principle does not indicate whether the memory changes resulting from perceptual
process modifications occur at the same, lower, or higher level of temporal granularity. In
practice, COGNET keeps the two processes at the same level of granularity. This is consistent
with the large body of literature (c.f., chapter 2 of Card, Moran, and Newell, 1983) that shows
these two processes as operating on the same time scale.

2.1.2.7 Multiple Task Instance Principle

This next principle deals with the abstract nature of cognitive tasks, and further details the
relationship between procedural knowledge and declarative knowledge in COGNET. The main
theme of this principle is that procedural knowledge may be defined in such a way that it
operates on specific pieces of information in memory (called the scope), and that those pieces of
information may be defined more abstractly within the cognitive task than they exist in memory.
Specifically, the principle implies that items of information in memory may be specific instances
of more general concepts or relationships (i.e., because they can exist in multiple instances), and
that the items of information in memory may be represented in the cognitive task at this more
abstract level. When this is the case, an instantiation process is required at the time the cognitive
task is activated. This is a process of creating a specific instance of the cognitive task and
associating it with a specific instance of information in memory on which it will operate. Thus, a
chunk of procedural knowledge that is defined this way, (i.e., in terms of abstract specifications
of information, specific instances of which may occur in memory), can be activated multiple
times, either sequentially or simultaneously. Each of these activations is an instance of the
cognitive task, and is bound to the specific instance of information in memory on which it will
operate. The principle also indicates that these task instances, even though they all contain the
same procedural knowledge chunk, are separate cognitive tasks from the perspective of the
attention process and all other principles in Table 2-1.

This principle also provides some detail, although implicitly, on the organization of
declarative knowledge in memory. Specifically, it implies that declarative knowledge can be
structured hierarchically with at least two levels of abstraction. The lower level of abstraction is
that level at which specific instances or declarative knowledge elements are placed in memory.
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The higher level of abstraction allows the same procedural knowledge to be applied to different
instances of declarative knowledge in different contexts or multiple instantiations.

2.1.2.8 Task Suspension Principle

This final principle adds one final state of cognitive tasks, a suspended state that results from
ceding the focus of attention on a volitional basis. This principle defines the ability of the
cognitive task to place itself in a suspended state and give up the focus of attention, while
establishing a condition under which it will become re-activated and again compete to complete
execution. The suspended state is in some ways like the inactive state, because a suspended
cognitive task is not competing for attention and is awaiting some future state of memory in
which a specific pattern is satisfied. Unlike an inactive task, however, the pattern here is not the
overall trigger but rather a situational-specific pattern called the resumption condition. In other
ways, the suspended cognitive task is like an interrupted task, because it has already had the
focus of attention, executed to some internal point, and will continue forward from that point
once (or if) it regains the focus of attention. In practice the task suspension principle deals with
chunks of procedural knowledge that are constrained by physical embodiment issues. For
example, a thread of reasoning about a radar track may be highly chunked (and thus activated as
a single cognitive task) but may incorporate points where the result of some external test or
communication is required. In such cases, the cognitive task would be suspended until the
needed information is in memory, at which time the process could continue.

2.1.3 CGF-COGNET Information Processing Mechanisms and Architecture

The information processing mechanisms within the COGNET framework is shewn in Figure
2-2. It shows the sensory/perceptual, cognitive, memory, and motor processes,

Extended Working Memory

Figure 2-2. COGNET Information Processing Architecture
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interconnected as described above. However, also as noted earlier, the AMBR model required a
variant of this architecture more oriented toward performance-level models. This is the CGF-
COGNET architecture, which is pictured in Figure 2-3.

The CGF-COGNET architecture builds on the basic COGNET architecture, by adding two
major types of components, sensory/motor resources (which enable the simulation of
time/accuracy constraints on physical interaction with the environment) and metacognitive
components (which enable more realistic management of both cognitive and sensory-motor
resources). These capabilities of CGF-COGNET are summarized in the subsections that follow.

2.1.3.1 Sensory-Motor Resources and Time-Accuracy Constraints

CGF-COGNET extends the information processing mechanisms in COGNET to support the
representation and simulation of the time/accuracy aspects of sensory and motor system
performance, in four primary ways.

The first extension was to allow the creation of specific resources in each of the processing
systems, but with particular emphasis in the motor-action and perceptual system. Rather than
pre-define specific resources at a fixed level of granularity, as for example does EPIC, the CGF-
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COGNET was designed to allow specific resources to be defined at a level that is appropriate for
the purposes of the specific model being built. Resources can be defined to have attributes that
allow them to be controlled. For example, eyes may have a point of gaze attribute, by which the
eyes can be directed; that is, a deliberate eye-movement can be represented as replacing a current

- point of gaze with a new one. These attributes may also deal with the status of the resources,

such as the ‘current business’ of a hand, or current use of the voice to complete an utterance.
The ability to define resources allows CGF-COGNET models to be constrained with human-like

limitations, in contrast to the undifferentiated (and unconstrained) sensory and action capabilities
in the standard COGNET.?

The second extension involved a modification of the architecture to permit multiple, parallel

* execution threads in each of the three subsystems of the architecture (cognitive,

sensory/perceptual, and motor). This allows independent processing activities to be executed in
association with the different resources that could now be defined within a given subsystem. For
example, the motor system could control separate action process associated with a right hand,
left hand, and voice, or the perceptual system could receive sensory inputs from separate visual
and auditory processes. The standard COGNET architecture, in contrast, permitted only one
thread of activity in each of the main processing subsystems. In addition, CGF-COGNET allows
some of the threads of activity in the sensory/motor subsystems to operate either in parallel with
cognitive processes or linked with them. This allows, for example, a cognitive process to

directly control an on-going motor process or to initiate it for ‘ballistic’ execution and then
proceed in parallel.

The third extension gave the ability to actually control the consumption of time on an
execution thread. This enabled a thread of activity (and any associated resources) to become
engaged in processes that occur over a period of time. The action processes in the conventional
COGNET framework, in contrast, occur as events only; with no inherent time-extensiveness.

The feurﬂ; and final extension involved creation of a micromodel construct. This construct

allows context-sensitive invocation of a low-level model of the time and/or accuracy of a specific

intended activity (motor or sensory) along any execution thread. The micromodel construct also
enables the representation of moderators such as stress and fatigue (based on invocation centext}
as well as individual differences in performance.

2.1.3.2 Metacognitive Capabilities and the Management of Proce.s'sing

CGF-COGNET also extends the cognitive architecture of COGNET to incorporate

metacognitive capabilities. The term ‘metacognition’ in CGF-COGNET covers a range of
iﬁmctmnakty that:

* gives the system a symbolic awareness of the state of its mtemai mformatmn
processing,

e provides the system with mechanisms to deal in a more complex manner with
interruptions and conflicts among resources, and

- * Of course, human performance could be and was represented using the standard COGNET representation. It
often required, however, additional modeling effort and detracted from the interpretability of the resulting model.
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e enables the system to control the flow of reasoning within the cognitive
subsystem based on features that are outside the scope of the COGNET Principles
of Operation, such as temporal constraints or team/organizational needs.

These functions are discussed in more detail in Zachary, Le Mentec and Glenn (2000), and are
summarized below.

Self awareness of resources and processes refers to the ability of CGF-COGNET to maintain
an explicit symbolic representation of the cognitive processes being executed, of their execution
status, and of the status (and plans for use of) various information processing resources that the
current and planned (first order) cognitive processes will require. Such self-awareness is a
necessary condition for cognitive models to be able to intentionally modify these processes. It is
also necessary for effective self-explanation. The self-awareness is achieved with two extensions
to the general COGNET framework. The first is an instrumentation of the information
processing mechanisms, including the resources that are defined for a specific model. This
instrumentation continuously gathers information on the status of all declared resources and their
attributes, as well as on the knowledge being used in all processing subsystems. For the
cognitive subsystem, this information includes the status of all cognitive tasks, which are either:

e inactive,

e active but not having the focus of attention,

e active and executing (having the focus of attention),
e interrupted (but still active), or

e suspended.

The symbolic information created by this instrumentation is then made available to the
information processing system through the second extension, a declarative metacognitive portion
of memory that contains this information.

Interruption management and conflict management refer to the ability of CGF-COGNET to
deal with various types of real and potential disruptions to its ability to act purposively. Potential
disruptions may arise from two sources: conflicts stemming from the use of or need for specific
resources, and conflicts that result from the interruption and resumption of cognitive tasks by the
cognitive processor. For example, a cognitive task may be executing a line of reasoning about a
specific object such as a radar track, triggered by its relationship (e.g., proximity) to another
track. This task could be interrupted by some other more pressing activity, and when it resumes
execution, the underlying relationship on which it was predicated may be fundamentally
different. In the example, the two tracks may no longer be closing on each other but may now be
moving apar't'. In such a case, continuing with conflict avoidance reasoning would be
inappropriate. Detecting the existence of such changes in the mental model of the world is quite
difficult; yet failing to do so dramatically degrades the quality and realism of the reasoning
process model. Another type of conflict can arise because of the potential for multiple threads of
independent activity. If one thread of motor activity is executing a complex motor task, it may
intend to begin using one hand and later shift the focus to another. However, a second,
independent thread may have already begun execution using the other. Detecting such a conflict
is similarly difficult. And in this case as well as the previous task-interruption case, detecting the
conflict is only half the problem. Once detected, a way of resolving the conflict must be
generated as well.
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The second set of metacognitive extensions in CGF-COGNET provide mechanisms to deal
with these conflict detection and resolution processes. These extensions build on the first set of
metacognitive extensions, specifically on the self-awareness, which provides the basis for
detecting conflicts. The conflict management functionality is accomplished through the
introduction of procedural knowledge that is purely metacognitive in nature, in that its main
purpose is to control the execution of first order cognitive processes, primarily by detecting and
avoiding conflicts. These metacognitive procedural knowledge chunks are termed controls, to
differentiate them from cognitive tasks. Controls can be triggered in a variety of ways, based on
self-awareness information and possibly other information in memory as well. The types of
controls and triggering conditions include

e deadlock controls, which are triggered when two threads of activity are
contending for a resource and the contention is causing each to be ‘locked out’,
and which when triggered resolve the deadlock according to the procedurai
knowledge they contain;

e proactive controls, which are triggered by some potential conflict such as an
- expectation of insufficient time to perform a cognitive task, and which modify
execution of the task in some way as to attempt to avoid the conflict;

e interruption/resumption controls, which are triggered when a specific cognitive
task is about to be interrupted or resumed, and which can alter the processing of
the task to accommodate a smoother interruption (e.g., by forcing completion of
some activity or reasoning in process) or a smoother resumption (e.g., by
detecting changed information which may affect task processing, and by then
determining how the change is to be accommodated). ,

These various controls compete for the focus of attention as do first order cognitive tasks, but in
general have higher intrinsic priority. The procedural knowledge incorporated into controls is a
superset of that which can be incorporated into cognitive tasks. Specifically, controls have
access to the self-awareness information in the metacognitive memory, and they are able to
execute those metacognitive operators that are extensions of the normal COGNET operator set.
Metacognitive operators are able to manipulate the aspects of the metacognitive memory that are
associated with the flow of attention among the first order processes, such as the priority of a
specific cognitive task. This allows metacognitive controls to effectively manage the flow of
“execution as a way of resolving resource conflict and/or interruption-driven conflicts.

2.2 COGNET Experfise Framework

The second major cemponent within the COGNET framework is the representation of
expertise. This is the internal information that is processed and manipulated by the information
processing mechanisms. Not surprisingly, the types and overall structure of expertise in
COGNET are largely defined by the Principles of Operation of those information processing
mechanisms (2.1.1 above). COGNET decomposes internal information into four basic types of

- expertise:

o declarative expertise — units of knowledge which contain state/attribute
information about (i.e., describe) the external environment, the problem/situation
being addressed by the system, and the problem-solving process itself;
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e procedural expertise — units of knowledge that define teleological states (e.g.,
goals) and information manipulations (e.g., inferences, physical actions) that can
achieve those states;

e action expertise — the units of knowledge that define transactions of the motor
system that can be used to implement intended effects/actions in the external
environment;

e perceptual expertise — the units of knowledge that defines processing operations
to generate/transform internal information in response to information that is
sensed from the external environment.

This decomposition is maintained in CGF-COGNET, with one addition:

e metacognitive expertise — the units of knowledge used to control the selection and
execution of procedural knowledge

In COGNET, the only types of metacognitive knowledge are the triggers and priority
measures of cognitive tasks, and they are actually incorporated into the cognitive task itself.
However in CGF-COGNET, as discussed above, there are separate metacognitive mechanisms
and thus separate metacognitive expertise components. Specifically, there is the declarative
metacognitive memory (i.e., self-awareness), and procedural metacognitive knowledge (i.e., the
various metacognitive controls and operators).

In terms of the COGNET and CGF-COGNET architectures:

e declarative knowledge, including declarative metacognitive knowledge, is
maintained in memory, and modified by both perceptual and cognitive processes,

o procedural knowledge is executed by the cognitive process, and both manipulates
information in (declarative) memory (excluding the metacognitive portions), and
. sends intended actions to the motor system.

e action knowledge is processed by the action/motor system, and manipulates the
external environment.

e perceptual knowledge is executed by the perceptual process as information is
sensed in the external environment. As the perceptual knowledge is executed, it
manipulates information in the (declarative) memory.

e metacognitive procedural knowledge is executed by the cognitive process, and
manipulates declarative memory (including the metacognitive portions).

The overall strategy for representation of each of these types of expertise is driven by the focus
of the overall COGNET system as discussed earlier — on expert-level competence (or
performance, in the case of CGF-COGNET) in complex real-time environments. Theories of
expertise and skill acquisition clearly point to the fact that experts rely, within their domain of
expertise, on rich and highly compiled knowledge structures that have chunked many lower level
productions into contingent structures that minimize the search of the knowledge space. In this
view, specific desired end-states, often called goals, are matched at a very high level with
features of the situation to call up a prepackaged, albeit abstract, strategy. The strategy is then
instantiated in terms of the specific details of the problem/situation, and executed.



This view is strongly evident in the COGNET Principles of Operation, and as noted in that
discussion, it has implications for the representation of both declarative and procedural
knowledge. For declarative knowledge, it implies that there needs to be some hierarchy of
abstraction in representation of the declarative information, to support the pattern-matching and
- instantiation processes, which work at differing levels of abstraction. For procedural knowledge,
it anhes that there is some internal contingent structure in which the application of lower-level
units is adapted to the specifics of the current instance.

The strategy used in developing COGNET was to identify well worked-out formal
representation schemes that could be adapted to reflect the above perspective. For procedural
knowledge, this was done by adapting and extending the hierarchical goal decomposition
notation called GOMS (Goais-Operators—Methods—SeIectmn Rules) first developed by Card,
Moran and Newell (1983). GOMS was in fact developed as a way of capturing human-computer
interaction competence. For declarative knowledge, this was done by adapting and extending the
hierarchical knowledge representation called the blackboard representation (c.f., Nii, 1986a,b).
The blackboard representation was originally developed to capture the multiple Eevels of
declarative information used by human in the process of understanding spoken speech, in a
speech understanding system called Hearsay (Erman et al. , 1980). Although it was later widely
used in Artificial Intelligence (see Carver and Lesser, §994) B. Hayes-Roth (1985) among others

have demonstrated its ability to capture the kinds of declarative expertise used by people in
complex tasks.

The requirements for the representation of perceptual knowledge were largely defined by the
Principles of Operation, which specified that this type of knowledge was self-activated and
essentially unitary in nature. The basic framework for this was first established by Reiger (1977)
‘as a 'spontaneous computation’ knowledge source, to which in fact the term demon was applied.
This representation has been subsequently evolved and applied by others, and formed the basis

for the definition of perceptual knowledge in COGNET. The various influences that shaped the
~ COGNET representation of expertise are summarized in Figure 2-4. The specific representation

Internal Expertise

Declarative Procedural Perceptual
Knowledge Knowledge = Knowledge

Expertise GOMS
Theories - Spontaneous
Computation

Planning
Blackboards

Hearsay

Figure 2-4. Influences in COGNET Expertise Representation




used in COGNET (and CGF-COGNET where it differs) for each of these types of expertise is
discussed below. After this, the relationship with the external environment in COGNET is
discussed

2.2.1 Declarative Expertise

Expertise in declarative memory in COGNET (and CGF-COGNET) is represented in a
blackboard format. In this representation, information is accessed for storage, retrieval and
modification purposes in units that are called hypotheses. The hypothesis represents a single
concept, but is not itself the smallest unit of declarative information, as hypotheses may contain
attributes, as well as bi-directional associations or links with other hypotheses

As discussed above, the Principles of Operation require these units of declarative information
in memory (i.e., hypotheses) to be represented at two hierarchical levels of abstraction (at least).
The blackboard representation in COGNET accomplishes this with a panel/level structure, in
which information in memory is organized into abstract groupings called panels, each of which
is organized into less abstract units called levels. Each level defines a specific class of
hypothesis, and hypotheses of that class are accessed through that specific panel/level. This
structure is shown in Figure 2-5.

Panel A

Level1 | Hypothesis 1 (attributes)
Hypothesis 2 (atiributes)

\ Hypothesis 3 (atitributes)
Level2 | Hypothesis 1 (attributes

‘Hypothesis 2 (attributes) N
Hypothesis 3 (attributes)

Level3 | Hypothesis 1 (attributes)
Hypothesis 2 (attributes)

Link Hypothesis 3 (attributes)

Level4 | Hypothesis 1 (attributes

Reverse Link Hypothesis 2 (attributes)A/
= Hypothesis 3 (attributes

~Level5 | Hypothesis 1 (attributes)
- Hypothesis 2 (attributes)

Hypothesis 3 (aftributes)

Figure 2-5 Blackboard Representation of Declarative Information in COGNET
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Formally, the blackboard is described as a series of independent panels:
Blackboard = {Panel;, Panely, ... Panel,}

Each panel is then described as a series of hierarchical levels:
Panel; = {Level;, Levely, Levels, ...Levely,}

Items of declarative knowledge are contained in hypotheses that are accessed via a specific
panel and level of this blackboard structure. Each hypotheses type is defined by its panel/level,
as containing a predefined number of attributes:

Panel;, Level; = {Objecty, with attributes Attribute;, Attribute,, ... Attribute,}

A hypothesis type need not contain any attributes, and attributes may be any type of information
— numeric, symbolic, etc. Specific instances of this type, i.e., individual hypotheses, are created
(or POSTed as it is termed in COGNET), with no values specified for any attributes. The
POSTing is done, as specified in the Principles of Operation, through cognltlve operators within
cognitive tasks and perceptual demons (which are discussed below).

Individual hypotheses, in COGNET, can be linked with other hypotheses by means of
cognitive operators or perceptual demons. These links can represent semantic relationships or
experiential associations. Although in principle any hypothesis can be linked to any other
hypothesis, actual links between specific hypotheses must be created as instances of link-types,
which are defined as possible associations between different hypothesis-types (i.e., panel/level

pairs). These link-types are defined simply by naming them and defining the panels and levels
they associate:

Link-type; = ((Panelﬂ, Level;), (Panel;s, Leveljg))

Specific links between spec1ﬁc hypotheses are created through cogmtwe aperators within
cognitive tasks and perceptual demons.

2.2.2 Procedural Expertise

The general representation of procedural expertlse is defined by the Principles of Operation,

‘which specify that it be organized into highly chunked units termed cegmtzve tasks. These

cognitive tasks have essentially two parts, a metacognitive ‘wrapper’, which contains the trigger
and priority measure, and the body, which contains the actual procedural knowledge.

- The task j:cedy is represented as a hierarchy of contingent goals and cognitive operators,
structured in:a format similar to that used in the GOMS notation originated by Card, Moran and
Newell (1983) and since widely modified and applied by others. However, the COGNET
cognitive task description includes additional features to allow for:

e accessing, creating, and manipulating information in the declarative memory
blackboard,

e constraining activation of lower level goals and methods on the basis of patterns
of information in the declarative memory blackboard,
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e instantiation of both behavioral (i.e., action-) operators and cognitive operators in
context-based ways, based on the declarative memory blackboard, and

e interruption, suspension, and subrogation of the current task.

The core notation for describing the knowledge in the body of cognitive tasks is summarized in
Table 2-2.

2.2.3 Action Expertise

Action knowledge is implied but not specifically incorporated into the COGNET Principles
of Operation. In COGNET, action knowledge in the motor system is invoked by the Perform
Action operator. This operator activates and executes an instance of the type of action
knowledge named in the Perform Action operator. The information from declarative memory
that is incorporated in the operator allows the action system to appropriately instantiate the
requested action knowledge.

In CGF-COGNET, the representation may also incorporate additional elements that allow for
ballistic action sequences (see 2.1.2.1) and that allow the performance time and/or performance
accuracy of the resulting action to be predicted. Time/accuracy predictions are created by a
construct called the Micromodel, which in structure is similar to a CALCULATE operator (see
Table 2-2). The Micromodel invokes a separately constructed model that predicts a time or
accuracy parameter for an action about to be invoked. Obviously, the Micromodel may also
utilize information from declarative memory in its estimation process. For example, if the action
desired is to push a button, a Micromodel of hand movement may be executed, e.g. which
encodes a version of Fitts’ Law (Fitts, 1954) to predict the time of the movement, given self-
awareness of where the hand is now and internal declarative knowledge of where the button is.
A different Micromodel could be invoked to estimate the accuracy of the action. The estimate(s)
produced by the Micromodel can then be used as a parameter of a SPEND_TIME operator,
which causes a specified amount of time to be consumed on that activity thread before the next
operator can be executed.

2.2.4 Perceptual Expertise

Perceptual expertise is represented in a simple manner in COGNET, using variants of the
procedural POST/UNPOST/TRANSFORM cognitive operators (see Table 2-2). The basic unit
of the perceptual expertise is the perceptual demon, as defined in the Principles of Operation.
Each perceptual demon consists of two parts, an environmental cue definition and an associated
memory modification operator (i.e., POST/UNPOST/TRANSFORM). The environmental cues
represent types of information that can be sensed, or patterns of such types. Consistent with the
spontaneous computation representation of perceptual knowledge, when any information is
sensed that matches any demon’s pattern, the demon is activated and its memory modification
operator is executed. This results in some hypothesis in declarative memory being created,
modified or deleted as a result of the perceptual processing of the sensed information.

In CGF-COGNET, a separate filter may be constructed between the external cues as sensed
and the perceptual subsystem where the demons are activated and executed. This filter
represents limitations imposed by the sensory resources, such as field of view or foveal diameter,
and necessarily relies on the cognitive proprioception of the sensory resources involved. For
example, field of view limitations rely on the self-awareness of the eye’s momentary point-of-
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gaze. In addition, Micromodel and SPEND_TIME operators can be incorporated into perceptual
demons in CGF-COGNET to represent time-extensive perceptual processes, e.g., reading a line
of text, picking a specific object out of a field of objects, etc.

Table 2-2. COGNET Description Language for Procedural Expertise
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TASK: TASK-GOAL-NAME, trigger, priority formula
(procedural body)

= definition of a cognitive task, which is named for the overall goal which the
chunk of procedural knowledge represents. The trigger and priority formula
form the metacognitive information which determines, in combination with the
momentary contents of the declarative memory blackboard, when and if the
cognitive task is activated and obtains the focus of attention. Once it has the
focus of attention, the procedural body is executed. The procedural body
consists of one or more goals and cognitive operators.

Elements of Task/Goal/Method Procedural Body:

GOAL: GOAL NAME...<...condition> = initiates execution of a subtree called the
GOAL’s body, which includes one or more operators and possibly lower level subGOALSs
OPERATOR is any of the following

POST:Panel:level: {attribute-name, attribute-value} = creates a new hypothesis at
the specified level of the specified panel, and assigns values to the attributes as
specified

UNPOST hypotheses-reference = unposts the hypothesis identified by the hypothesis
reference

TRANSFORM hypotheses-reference,{attribute-name, attribute-value} =
transforms the specified values of the specified attributes of the hypothesis
identified in the hypothesis reference

DETERMINE operation-name ({data/ parameters}) = execute an instance of the
named generic symbolic operator; returns a numeric result from a separately defined
operation, with optional parameters (which may include performance time in the
CGF-COGNET version only)

CALCULATE operation-name({data/ parameters}) = execute an instance of the
named generic mental- arithmetic operator; returns a numeric result from a
separately defined operation, with optional parameters (which may include
performance time in the CGF-COGNET version only)

Suspend until [condition or future time] = suspends the current cognitive task, setting
a condition for resumption or a future time for resumption

Perform ACTION ({data/ parameters}) = invokes the motor system to perform
ACTION using the specified parameters

Use Method ({parameters}) = invoke execution within the current cognitive task of a
context-independent chunk of procedural expertise to be instantiated using the
specific parameter values provided

Embedded terms are defined as given below .
trigger is a Boolean statement based on blackboard hypotheses, including multi-level
existential quantifiers, which will activate the cognitive task whenever it evaluates
to True
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priority formula is a numerical formula based on blackboard hypotheses and/or
constants, including multi-level existential quantifiers, whose value at any point in
time will define the priority of that task for capturing the focus of attention
condition is either
a Boolean statement based on blackboard hypotheses, including multi-level
existential quantzﬁers
OR

context free CONTROL information, such as repeat until ..., continue while, etc
hypothesis-reference is either

a FIND operator with an associated Boolean expression based on blackboard

hypotheses including multi-level existential quantifiers; the hypotheses that satlsfy

the expression are the referents of the FIND

OR

a name or pointer that is associated with a specific hypothesis in memory (the

association can be established when the hypothesis is POSTed or when a FIND is
executed)

A METHOD, invoked by the USE METHOD operator, is a separate chunk of procedural
knowledge, and is defined as follows. Its procedural body is constructed in the same way
as the procedural body of a Cognitive Task

METHOD method-name: <parameters>
(procedural body)

2.2.5 Metacognitive Expertise

There are three types of metacognitive expertise in CGF-COGNET. The first is the
metacognitive trigger and priority formula associated with each procedural knowledge chunk,
common to COGNET and CGF-COGNET, and previously discussed (2.2.2). The other two
exist only in the CGF-COGNET variant of the system. These are self-awareness declarative

memory, and metacognitive controls, which were discussed in 2.1.2.2 above. The representation
used for each is detailed below.

2.2.5.1 Declarative Metacognitive Memory — Self-awareness

Declarative metacogmtwe memory in CGF-COGNET is represented in the same was as other
types of declarative memory, i.e. , using a blackboard representation. In CGF-COGNET, there is
a separate metacognitive biackbeard on which the self-awareness information from the CGF-
COGNET information processing mechanisms is posted. Table 2-3 presents the types of
hypotheses that are stored in the generic or default part of the metacognitive blackboard. Only
one panel is provided by default. This is named the Task panel, and contains information on
current and past task activation. It provides self-awareness of information on current and past
cognitive processing at the task level. It consists of five levels, named the Task level, the
Instance level, the Current level, the History level and the Ordering level. The panels are
interconnected with a number of links, as described below.




Table 2-3. Organization of the Default Metacognitive Blackboard Panel

Panel name Level name Attributes Links/Reverse links
Task Task Task Name Instance/Task
Task Instance ID Current/Instance
Activation time History/Instance
Start time Task/Instance
Context Ordering/Instances
Trigger Environment
# of interruptions
Estimated Duration

Task Current Time Spent Instance/Current
Status

Task History Actual Duration Instance/History
End Time

Task Ordering Instances/Ordering

Additional panels may be created for use in specific models, particularly to capture self-
awareness of specific sensory-motor resources that were created for that model. Because of the
variable granularity approach CGF-COGNET employs, however, there are no default resources
and thus no default self-awareness resource information.

2.2.5.2 Procedural Metacognitive Expertise — Controls

A control is a metacognitive procedure that is triggered by the occurrence of a specific event,
on either a reactive basis (i.e., the event has occurred) or a proactive basis (i.e., the event may
occur in the future). Various types of controls are incorporated in CGF-COGNET to react to
different classes of events, as discussed in 2.1.2.2 above. The representation of controls involves
two different components:

1) control definition — an explicit representation of the procedural knowledge in
the control as a stand-alone definition; and

. 2) control declaration — a specification of what control should be used, where
and under what condition. These specifications are embedded within the
cognitive tasks that are affected by the controls.
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Controls are defined in a manner analogous to the METHOD and DETERMINE constructs
used to represent context-free procedural knowledge (see Table 2-2). That is, the metacognitive
procedural knowledge in the control is contained as a procedural body of an operator of the form

DEFINE_CONTROL <control-type> <control-name> (control-parameters)

The procedural body is represented using the procedural knowledge operators in Table 2-2,
except that the embedded terms may refer to the metacegmtwe portions of declarative memory
as well as the non-metacognitive portions.

A control declaration specifies what control is to be used under what conditions in a
cognitive task. The declaration is of the form

ON <control-type> <control-name> (control-parameters)

The control-type specifies the type of control (e.g., interruption, recovery, deadlock, etc.),
which in turn defines the types of parameters it requires. A deadlock control, for example, needs
the hypothesis in the metacognitive blackboard that represents the resource to which the control
applies.

A declaration can be placed globally in the model or local to a Task, Goal or Method. A
global declaration may mean, for example, that a specific control is always to be used when the
event (e.g., a hand-resource deadlock) occurs. A more localized declaration applies only to the
lowest level of procedural knowledge (Task, Goal, subGOAL, etc.) in which it is placed,

allowing the metacognitive processing to be invoked and applied in a highly context-sensitive
manner.

2.2.6 Interactions with the External World in COGNET

As should be clear from the preceding discussion, a COGNET and CGF-COGNET model’s
interaction with the external world depends on both the internal processing mechanisms and the
internal expertise. In fact, though, it is the internal expertise that is critical. Although it is the
sensory capability that detects external cues, the information registered can only be internalized
when there is some procedural knowledge available to internalize information about that cue in
memory. Similarly, although it is the motor system that implements action, the overall system
can only take those actions about which it possesses appropriate motor knowledge. Thus,
without appropriate perceptual knowledge to allow the model to make sense of what it senses, or
appropriate action knowledge to allow the model to manipulate the external world in a purposive
way, the processing mechanisms are of no utility.

At a deeper level, the finiteness of a specific COGNET/CGF-COGNET model does place
limits on its interactions with the environment. The way in which the patterns of demons are
expressed, for example, must match precisely with the way in which cues are sensed and
registered internal to the system. Even a slight ‘impedance mismatch’ can result in information
being lost or ignored. Similarly, the actions that the motor system attempts to take must match
the affordances in the environment. Again, even a slight mismatch can result in actions not
being successfully taken. This is clearly an artifact of both the way synthetic cognition systems
work, and of software systems in general. They require the physmal and data interface between

~ the model and the external world to be engineered in a fairly precise manner. This has been a

main concern in the development of the actual software system that implements COGNET, as
discussed below in2.4.




2.3 Three Types of COGNET Models

The preceding discussion permits a differentiation between several types of models that can
be built with the COGNET framework. The simplest type of model is a representation of the
internal expertise that underlies expert-level competence in a given domain. This is an ‘expertise
model’. When represented in the COGNET description language as discussed above, the
expertise model is both formal and executable. However like a program without a processor, its
executability is only theoretical. The expertise model can be made practically executable by
adding the other two terms in the essential COGNET equation, i.e., processing mechanisms and
external context. This involves adding:

e asoftware emulation of the underlying information processing mechanisms so
that the expertise can be executed and applied, and

e aconnection to a (real or simulated) external environment, which provides
appropriate sensory cues, affords opportunities for physical manipulation of the
environment, and connects the two with realistic problem dynamics.

The result is a cognitive model that is in embodied and situated in a context, and is able to
simulate fully competent cognitive processing within that context. This model, which subsumes
the expertise model, is called a ‘competence model’. The relationship between the two is shown
in Figure 2-6a and 2-6b.

The behavior of the competence model differs from the behavior of actual human experts in
that it is not constrained by many of the factors, which limit people’s ability to perform perfectly,
such as the time and accuracy terms, which are introduced into the COGNET ‘performance’
equation. These limiting factors are incorporated by adding to the competence model a set of
(typically domain specific) features, which represent the factors that limit performance in that
domain. These features can include such things as timing, accuracy, reach limitations to manual
actions, limits to visual performance such as acuity and field of view, channel conflicts on
auditory channels, and so on. Consistent with the overall philosophy of COGNET, these factors
are not organic to the system. Rather, they are constructed and incorporated as needed for
specific applications (returning again to the notion that a model is a representation constructed
for a specific purpose). This allows for flexible granularity and scope of features in the
representation process. These limiting factors thus envelop and constrain the competence model,
and yield a performance model, as shown in Figure 2-6c.

2.4 Software Support for the Model-building Process

The development of these three classes of COGNET models obviously requires various types
of software support, beginning with the software emulation of the internal processing
mechanisms. Over the last five years, the COGNET research team at CHI Systems has
developed an entire software environment to support the building, execution, testing and
application of the different types of COGNET models. This environment is named iGEN™, and
consists of several components. The main component is the software engine that emulates the
internal processing mechanisms and functions according to the Principles of Operation discussed
previously. This engine is called BATON (Blackboard Architecture for Task-Oriented
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Figure 2-6. Three Types of COGNET Models

Networks) As can be easily seen in Figure 2-7, BATON executes some body of internal
expertise, i.e., expertise model, within a specific problem context. The expertise model is
represented in two different forms in iGEN™. BATON itself operates on a highly formal
representation of the COGNET expertise description language that is embedded in a list-
processing syntax and is called the COGNET Execution Language or CEL. While CEL can
certainly be read and authored by people, it does require some substantial programming skill.
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Figure 2-7. Organization of the iGEN™ Cognitive Agent Toolkit

To reduce this need for programming knowledge, a graphical or visual programming interface to
CEL was created within iGENT™. This is the CEL Graphical Representation or CGR, and is the
primary means by which iGEN™ users interact with the expertise model. The translation
between CEL and CGR is done automatically and continuously by iGEN™.,

iGENT™ also incorporates a set of debugging tools to help the model developer isolate and
correct errors in expertise models, and a C++-based Application Program Interface (API) which
allows the expertise model and BATON to interact with an external context. iGEN™ assumes
that this external context is created or interfaced with separately from iGEN™, although iGEN™
does provide a capability for interactions with an external context to be scripted as an aid to
model building. The interface that is built with the API, between a specific expertise model and
the context in which it operates, is called the model’s 'shell'. Once an expertise model and shell
have been fully debugged and tested, it is possible to detach the expertise model (in its CEL
form), the BATON engine and the shell from the rest of the iGEN™ development environment.
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Figure 2-8. Use of iGEN™ to Develop the AMBR ATC Model.

This creates a separate, standalone or embeddable cognitive model that can be integrated into
another software application, such as a CGF simulation, an intelligent tutoring system or a
decision support system. The overall structure of iGEN™ is shown in Figure 2-7.

Figure 2-8 depicts the process by which the Air Traffic Control performance model was

developed for the AMBR program. The CGR authoring tools were used to formalize the results
~of a cognitive task analysis (see Section 3 below) into a specific COGNET expertise model of

the AMBR task. At the same time, a software shell was constructed that allows the BATON
engine to 'see’ the ATC testbed displays, and to ‘manipulate' the testbed controls (keyboard and
mouse). Once the initial expertise model and shell were built, the model developer(s)
systematically tested and debugged both, using the iGEN™ debugging tools. When the
debugging was finished, the AMBR expertise model, BATON, and AMBR shell were detached
from iGEN™, compiled into a stand-alone application, and transported to the moderator site for
the fly-off data collection. (It should again be noted here that the versions of BATON and
iGEN™ used in AMBR were those based on the CGF-COGNET variants of the COGNET
framework, as discussed above, not the commercially available iGEN™ system.)
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Figure 2-9. Execution of COGNET/iGEN™ Model

The process by which the iGEN™ competence or performance model is executed is pictured
in Figure 2-9.

The external environment typically exists as a separate software entity, ranging from a simple
script to a full simulation environment or even a ‘live’ operational software environment such as
an actual air traffic control system. The model has access to this environment through the shell,
which performs two primary functions by providing:

e inputs to sensation — the shell captures specific events or processes within the
environment and translates them into cues that will become accessible to the
sensory system (in the case of a performance model) or directly into the
perceptual system (in the case of a competence model).

e outputs to the environment — the shell translates actions taken by the model, such
as hand movements or verbal messages, into software events or processes within
the external environment. For example, a hand movement to depress a button
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could be translated into a message to depress the button electronically at a specific
time, or a verbal message might be translated into a command to a voice
synthesizer and/or a message to another software component.

Before an actual application is executed, the BATON executes the initialization component
of the expertise model, which populates memory with various elements of declarative knowledge
that are to be present in memory when the actual execution starts. Once the execution begins,
the three information-processing subsystems (cognitive, perceptual, and motor) in BATON begin
to operate in parallel. Cues from the environment are registered by the perceptual subsystem via
the shell, and appropriate perceptual demons are activated within BATON, resulting in
information being posted on the blackboard structure, which represents memory.
Simultaneously, the various cognitive tasks begin to compete for the focus of execution attention
in the cognitive processor, with the metacognitive information (triggers, priorities, suspension’
conditions, etc.) determining where and how the focus of attention flows. Any cognitive task
may, while being executed, modify the contents of memory. At various points in time, the action
process may be invoked by a cognitive task, defining specific actions to be taken. The action

processes, which reside entirely within the shell, generate events in the environment, which
implement the requested action. "

3. MODEL DESCRIPTION

3.1 Modeling approach

Our main objective for the AMBR program was to create a model that could perform the

ATC task in 2 human-like manner, generating performance measures, response times, and post-
‘task subjective workload assessments within ranges documented for human subjects. Not only
did the model need to generate realistic outputs for given inputs (pass a Turing test), it also had
to use a human-like strategy, as indicated by a cognitive task analysis (CTA). The goal of
correspondence to human methods or strategies is primarily a practical rather than a theoretical
goal, in the sense that realistic performance (which is highly desirable from the perspective of
Computer Generated Forces) is more likely to be obtained in complex multi-tasking situations
using human-like cognitive processing strategies and internal representations than using other Al
techniques. However, it is a theoretical goal to the extent that the rich literature on expertise
(e.g., Chi, Glaser & Farr, 1988; Ericsson & Smith, 1991; Hoffman, 1992) informs the structure
and flow of the model. An example of this is the incorporation of the notion of ‘mental model’
'in the problem representation blackboard.

We were not concerned with correspondence at the level of specific mechanisms in a
physiologica] sense for modeling either sensory-motor or cognitive aspects of processing. In
fact, COGNET is generally neutral with respect to specific theories of sensory-motor processing,
allowing the modeler to determine the appropriate approach and level of granularity for a
specific modeling problem. In general, our approach is to use “just-enough” granularity to
adequately describe the phenomena and generate realistic performance to meet a goal, while
expending a minimum of modeling effort. As has been pointed out by Pylyshyn (1989) among
others, “computers can enter into the detailed process of constructing models of cognitive
processes at several levels... the more fine-grained the correspondence match, the narrower the
range of phenomena the model is able to cover.” (p. 62). Thus, a coarser grain model can deal
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with a wider range of phenomena, generally a benefit for modeling complex, real-world task
performance.

A number of characteristics of the problem and problem domain shaped our approach to the
model. The key aspect of the problem was multi-tasking behavior—prioritizing tasks, shifting
attention among tasks, and modification of multi-tasking management strategy due to changes in
workload. COGNET was designed to handle multi-tasking problems — the cognitive
architecture and Principles of Operation (described in Section 2 above) incorporate mechanisms
for handling competition among tasks for attention, and allocation of attention is an emergent
property of the architecture without any need for an executive process or special mechanisms.

Model development involved understanding task strategies and priorities used by subjects
and encoding that into the model. Understanding the typical multi-tasking management
strategies drew upon two major sources. The first one was the tuning subject questionnaire data.
In order to enhance and augment the data that we were given, we performed additional cognitive
task analysis (CTA) with in-house test subjects. We selected subjects using the same criteria
used by BBN for screening subjects. One of the requirements resulting from the initial analysis
was to build a model for each of the two aiding conditions—one for text (unaided) and one for
the color (aided) condition. Each of these AMBR models represents a generic or average
individual. Another key requirement identified during the analysis was that task load should
drive both the overall task execution strategy as well as error inducement, under both aiding
conditions.

In determining the appropriate level of granularity for implementing specific types of model
elements (e.g., micromodels), it was important to understand the contribution , which these
elements made to the richness of the human performance aspects of the model. The CTA
revealed that there was no clear case to be made for representing action time charges at a low
level of granularity. In deciding how to scope and scale model elements, it was necessary to
understand the impact of low-level details of the model (e.g., micromodel time charges for hand-
movements) and compare them to high-level details of the model (e.g., strategy selection as part
of multi-tasking management). As such, it was decided that micromodel calculations would be
done at the higher-level for such things as hand-movements and eye actions. In order to be able
to tune individual micromodels for calculating action time charges, it was important to be able to
control these micromodels using a modifiable coefficient.

3.2 Model characteristics

3.2.1 Model structure and conceptual overview

As described in Section 2.4 above, the primary components of a COGNET expertise model
are a set of cognitive tasks encoding procedural knowledge and a blackboard encoding
declarative knowledge about the task situation. A shell allows interaction with the ATC
simulator — perceptual information is posted to the blackboard from the simulator and simulator
actions are initiated by the model. Figure 3-1 shows a conceptual overview of the AMBR
COGNET model.
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Figure 3-1. AMBR Model Conceptual Overview

The model incorporates the notion of ‘mental model’ by defining an
‘Airspace_Mental_Model’ blackboard panel. The levels in this panel provide a syrnbehc
representation of the subject’s understanding of the task situation. Other panels in the
blackboard represent the perceptual process of abstracting from all perceivable display elements

(Panel Raw_Display_Elements) those that are perceived as a result of visual scanning of the
display (Panel Perceived_Display Elements).

As part of the analysis and the model building process, it became clear that there needed to
be a distinction between 'strategic’ and 'interaction’ tasks. Loosely, strategic tasks are those that
involve understanding the situation and developing intentions to act, while interaction tasks
perform each of the required actions. “Gpdate Situational Awareness,” which represents the
strategies for scanning the display regions and determining what needs to be done, is an example
of a strategic task. “Accept Incoming Aircraft,” which performs the procedures associated with
accepting an inbound aircraft, is an example of an interaction task.

Figure 3-1 shows an overall conceptual view of the ATC model. As events occur in the ATC
simulation, the model receives perceptual inputs for these events via the shell through Demons.
For example, as text items are added to text lists, as tracks turn different colors, and so on, these
events are posted onto their respective levels of the blackboard panel “Raw_Display_Elements.”
The task “Update Situational Awareness” determines which elements of the radar display should
be examined based on the mental model status. As actions are taken to look at various parts of
the display while looking for “things to do”, aspects of the raw display elements are perceived
and posted to the “Perceived Display Elements” blackboard panel. Further, additional model
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elements in the “Update Situational Awareness” task interpret these percepts and update the
mental model accordingly, posting changes to the "Airspace_Mental Model blackboard panel.
Ultimately, it is the posting of intentions to act, to the mental model, that trigger the interaction
tasks to initiate and carry out the required steps for the associated action (e.g., Accept Incoming
Aircraft).

3.2.2 Multi-tasking strategy and attention management

The ATC multi-tasking strategy is accomplished in the model by means of the attention
management mechanisms incorporated in the COGNET cognitive architecture. How task
selection occurs across multiple tasks, when tasks are or are not interrupted, which tasks are
dropped when workload is high, and related implementation choices, is explained below in the
context of the cognitive architecture and the reasoning process that is encoded in the ATC model
components.

As described in Section 2 above, COGNET tasks are separate chunks of procedural
knowledge that compete with each other for attention. Each task has a triggering condition and a
priority that are reevaluated anytime there is a change to the blackboard whether initiated by a
perceptual demon or a cognitive operation. The triggering conditions indicate when a task is
relevant to perform, and evaluation of the priorities of all relevant tasks yields focus of attention
to the task with the highest priority.

There are two types of tasks represented in the model — strategic tasks that maintain the
mental model and interaction tasks that perform ATC task actions (such as welcoming).
Strategic tasks figure out “what to do” then subsequently post intentions to act (pending required
actions) to the mental model. Interaction tasks are triggered by these intentions. Interaction
tasks in the ATC model are triggered using the “Detect Event” operator. This operator is used to
define the context under which a task can be triggered and allowed to compete for attention.
Figure 3:2 depicts an example of a typical interaction-level task trigger, specifically, the task
trigger for accepting an incoming aircraft. This specific detect event is true if an intention posted
to the Airspace Mental Model Panel, Intentions level has a type set to “ACT”, a context set to
“ACCEPT”, and a status set to “PENDING”.

The CTA revealed a distinction between strategic and interaction tasks. Subjects consistently
indicated that they wouldn’t allow themselves to be interrupted when performing an interaction
task; once they decided what they needed to do, they would perform the required actions
ballistically. High-level strategic tasks could be interrupted and, at a conceptual level, this
represents a self-awareness of the need to shift between high and low workload conditions.

COGNET asks are not by definition arbitrarily interruptible and can only be interrupted
wherever thqie is a modification to the blackboard (i.e., POST, TRANSFORM, UNPOST) that is
specifically flagged with the “SIGNIFICANT” sub-operator. In order to generate realistic
behaviors consistent with the observation that subjects wouldn’t allow themselves to be
interrupted during an interaction task (e.g., accepting an incoming AC), use of the
SIGNIFICANT sub-operator was limited to strategic tasks and was not used in any interaction
task.
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Two facets of the model’s multi-task strategy are the shedding of lower priority tasks during
times of high task-load and the shedding of lower priority visual scanning behaviors. The model
performs its visual scanning behaviors, by component, looking for something to do. When and if
it finds something to do, it “bails out” and attends, at the procedural level, to the task that needs
to be performed. If it is aware that multiple actions currently require attention, it will prioritize
them based on their relative importance (e.g., the model would attend to accepting a track and
then respond to a pending speed change request). The model uses the hierarchy of the goal

structure in the “Update Situational Awareness’ task to represent the implicit relative importance
of various types of behaviors.

3.2.3 Visual scanning

The visual scanning heuristics represented in the model are based on analysis of test subject
data conducted as part of the cognitive task analysis (CTA). Two simplifying assumptions that
were integrated into these representations are that 1) changes in the display could be consistently
perceived (but not the quantity nor type of change) and that 2) the mental model that drives the
scanning heuristics wasn’t capable of “forgetting”. ‘Although the model structure and iGEN™
application both support the ability to apply memory-moderators, since there were no empirical

- data to support a principled approach to their construction and use for this specific task, they

were not applied.
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The typical scanning strategy represented in the model is to scan the display, region by
region, for the visual indicators of “something to do”. Those display regions that haven’t
changed from the last visual scan are ignored. This status is part of the mental model. For text
list panes, the model scans the list and compares what it sees to its mental model of what it has
read in order to distinguish things it has done from things it still needs to do. The scanning
heuristic represented in the “text” model is purposefully different from the scanning heuristic
represented in the “color” model. While the text model has goals mapped to scanning each of
the various ATC display components (e.g., radar display, accept text pane, speed change text
pane), the color model has the singular goal of scanning the radar display for color changes.
This difference between the two models is consistent with the results of the CTA that revealed
two fundamentally different approaches for visually scanning for “something to do” for the text
and color conditions.

3.2.4 Blackboard

There are two blackboards in the ATC model; the standard blackboard and the metacognitive
blackboard. As is typical of iGEN™ models, these two blackboards play a central role in the
design and execution of the AMBR ATC cognitive model. Figure 3-3 below depicts the high-
level blackboard structure for the standard blackboard and Figure 3-4 that for the metacognitive
blackboard. Each panel, and its subordinate levels, is also enumerated. The ATC model
standard blackboard contains four primary types of knowledge and information such as
declarative knowledge concerning task concepts, raw perceptual inputs from the external world,
percepts of these raw inputs, and a mental model for encoding symbolic representations of
dynamic context. The standard blackboard is broken out into the following Panels:

e Raw ATC Display: As events that can be perceived occur in the simulation
environment, they are sent to the model through a Demon and posted to the
appropriate level of this panel based on the type of perceptual information that is
encoded.

e Perceived Display Elements: As the model invokes visual scanning actions, it
posts representations of the resulting percepts onto the appropriate level of this
panel

e Airspace Mental Model: This panel stores such things as action status,
introspective task load assessment and intentions. These intentions connect the
model's volition to act and the action instantiation in the simulation console.

e ATC Task Concepts: This panel provides the knowledge representation for key
ATC declarative knowledge components such as ATC controller, AC color, and
display region semantics.

The metacognitive blackboard is broken out into the following Panels:

e Metacognition: Moment-to-moment task state information for each active task is
stored in this panel. The information includes task start time, task [trigger]
context, interruption and resumption information, task priority, as well as
workload metrics.



o Self: This panel stores information that is used for introspection and self-
awareness of ATC task. This includes information for use in task load
determination, a representation of expertise level, and actmns taken by the model
in the situated environment.

3.2.5 Cognitive tasks

As discussed previously, the model distinguishes between strategic and interaction tasks.
Strategic tasks figure out “what to do” then subsequently post intentions of pending required
actions to the mental model. Interaction tasks are triggered by these intentions and contain the
knowledge required to execute the procedure-specific actions. Table 3-1 lists the strategic and
interaction tasks in the ATC model. A single example of each of these task types is presented in
more detail in the paragraphs that follow.
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Figure 3-3. ATC-Model Standard Blackboard Structure
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Figure 3-4. ATC-Model Metacognitive Blackboard Structure




Table 3-1. ATC Model Task Listing

Task Name Type Description

Think_about_task_load Strategic Maintains self-awareness of changes in task
load

Update_situational_awareness Strategic Maintains situational awareness of ATC
task elements

Accept_incoming_aircraft Interaction | Accepts incoming AC

Welcome_incoming_aircraft Interaction Welcomes incoming AC

Respond_to_speed_increase_request Interaction | Responds to speed change requests

Transfer_outgoing_candidate Interaction | Transfers outgoing ac

Order_ac_to_contact ATC Interaction | Orders ac to contact ATC

Get_aircraft_out_of_holding Interaction | Responds to red tracks to get them out of
holding

The ATC model task “Update situational awareness” (SA) represents the central task of
visually inspecting the radar display for “something to do”. It maintains the ATC model’s
mental model of the dynamic situation — information necessary to decide what to do, when, and
how. Among other properties, the mental model contains the status of any given aircraft
attended to by the model and notions of task status for each respective aircraft that has been
handled.

The SA task represents the scanning precedence of display regions implicitly through its goal
structure. Figure 3-5 shows the high-level view of the SA task. The visual scan goal list for the
SA task is constructed so that each goal is tested, sequentially, for a given task execution. Part of
the precondition for each goal is a test for the creation of intentions that were created during the
execution of preceding goals. If any goal that is executed leads to one or more intentions being
created, the remaining display regions are not scanned during that instance of task execution.

The goals are executed in sequence until the intentions level of the Airspace mental model
panel of the blackboard has an action intention. Each triggering of the SA task results in either
something to do (one or more intentions posted to the mental model) or nothing to do (no
intentions posted). A more detailed example of part of the Update Situation Awareness Task
(the scan for"transfer candidates) is shown in Figure 3-6.

The interaction tasks carry out the action intentions posted in the mental model. An example
of an interaction task is shown in Figure 3-7. This task, like the other interaction tasks, is
composed primarily of a sequence of visual scanning and manual manipulation actions.
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3.2.6 Actions and action time charges

The ATC model is capable of two types of actions; those that represent visual scanning
behaviors (such as “seek transfer candidate) and those that represent motor actions for
interacting with the ATC simulator console (such as “press accept button”). As previously
mentioned, each of the respective interaction tasks encodes the motor-level actions (iGEN™
perform-action operations) required to perform the corresponding procedure. Table 3-2 below
describes each of the actions that the ATC model is capable of performing.

In order to generate realistic estimates of overall reaction times, it is necessary to encode
metrics for calculating predicted action time charges. These are represented inside micromodels
in the ATC model. iGENT™ micromodels are granularity-neutral and don’t require any pre-
determined level of representation. The selected level of representation allowed the model to use
the quantity and location of display elements to calculate action time charges. This approach of
“just enough representation” was motivated by the ever-present tradeoff between choosing a
granularity level low enough to generate high-fidelity human performance predictions and
providing a feature-rich model that captures as much of the full task domain as possible given the
development resources available.!

4 It was precisely to support this kind of tradeoff that COGNET and CGF-COGNET were constructed with the
flexible granularity stance described in 2.1.1.
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Table 3-2. ATC Model Action Time Charges in Micro Models

ACTION ‘MICROMODEL (ms)
GUI-OBJECT-SELECT Fixed charge given dynamic taskload leve! high
. : 580, med 600, low 650 .
GUI-BUTTON-PUSH Fixed charge given dynamic taskload level high
. 580, med 600, low 650
Back_check_accept_pane_for_accept_candidates 200 * number of items in accept pane
1 Back_check_accept_pane_for_welcome_candidates 200 * number of items in accept pane
Back check_speed_change_pane 300 * number of items in speed change request
, pane

Scan_Display_for_any_Red_Tracks 300 * number of red tracks on display

Scan_Display_For_Transfer_Candidates 200 * the number of perimeters that are searched
until candidate found (4 max)

Backcheck_Contact_Pane for_Contact_candidates 300 * number of items in contact pane

Look_at_pane Fixed charge given dynamic taskload level high
580, med 600, low 650 '

Look_at_button Fixed charge given dynamic taskload level high
580, med 600, low 650 )

Look_at_ac Fixed charge given dynamic taskload level high

, 580, med 600, low 650 '

Look_at_atc Fixed charge given dynamic taskload level high
580, med 600, low 650

Look_for_collision_conflicts 300-500, depending on context

3.2.7 Errors

As in any attempt to generate realistic human performance data, the construction of the ATC
model required the modeling of performance errors. Any effort to induce error in a human
performance model needs to take into account the relationship between the various types of
errors possible, the underlying human information processing mechanisms responsible for those
errors, and the error recovery processes necessary to correct those errors. The CTA revealed that
at least four different types of errors were possible, as outlined in Table 3-3 below. It was clear
that the impact and interaction of various types of errors, and the necessary error-recovery
strategies, were complex and rich. Unfortunately, there was no available empirical data to
clarify the possibly complex and cascading relationships between these error types and the
observed performance measures (e.g., an instance of an aircraft symbol becoming red). Asa
result, there was no clear way to understand how each type of error might have contributed to the
performance results of the human subjects, and therefore how to model the underlying errors. As
the time taken to handle/correct errors can easily alter the response time statistics, the assessment
of fit between human and model performance measure results is a complex issue. If the error
results map well but the response time results do not, their lack of mdependence suggests that the
overall mapping is poor, and so on.

In the absence of a clear understanding of the errors captured by the fly-off perfermance
measures, it was decided that the scope of errors that would be integrated into the model would
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Table 3-3. Error Types in ATC Task Performance

Type Example
Cognitive Mis-process an AC name
Mental Model Mis-remember the status of an AC and

repeat an action

Perceptual Mis-perceive an AC name and perform
action on incorrect track

Motor Press the wrong button

be those that did not require significant amounts of error-recovery logic. After analyzing the
subject data, it was decided to generate errors at the motor level by assigning a probability to the
inducement of such errors and stochastically inducing this error type based on the dynamic task
load. Specifically, when the error probability was met for a given AC that was required to be
transferred, the model would incorrectly press the “contact” button instead of the “transfer”
button. The result is that the track eventually turns red because of the incorrect actions being
applied. The components of the model that respond to a track turning red are used to recover
from this error (i.e., task get_ac_out_of holding”). Moreover, this error inducement was
capable of effecting multiple performance score components, such as total score, holding delays,
duplicated messages, and incorrect messages.

3.3 Model development process

The model development process unfolded over three primary stages. The first was the
development of the initial baseline competence model encompassing the knowledge required to
do the more-complex job (the text condition). The second stage involved refinement of the
competence model into a realistic performance model yielding human-like response time and
accuracy behavior. Once the model produced good performance and response time measures,
the model was split into two versions — one for the text condition and one for the color
condition. Each stage will be discussed in turn.

The initial baseline model was a competence model in that it contained all the knowledge
needed to perform the job. However it was characterized by the fact that at this early stage there
were no errors, the visual search heuristic was exhaustive, and each individual task was
performed properly, but without a realistic temporal priority scheme. This competence model,
‘while representing the baseline knowledge required to “do the job” did not perform the tasks in a
realistic order, nor did it generate realistic response times.

Refinement of the model into a performance model involved fine-tuning the task strategy,
tuning the micromodels using the human subject tuning data, and adding error inducement.
First, the visual search strategy was modified from an exhaustive search through all display
regions to a search until first match. As discussed above, the final models incorporated a visual
scan strategy that searched regions in order of importance and when something to do was found,
stopped the search and performed the action. This change produced a more realistic task
performance ordering in that it more closely matched the strategy employed by test subjects.

44



The second component of performance involved refinement of response times generated by the
model. Model response time data were compared to tuning subject response times and the basic
operation times in the micromodels were adjusted up or down to tune the micromodels. This
was repeated until the model produced response times in the range of the times produced by the
tuning subjects. The third aspect of model refinement involved error inducement. The method
for incorporating errors into the model was described in Section 3.2.7 above. It was at this
second stage in model development that the generation of subjective workload assessment
measures was added to the model. This is described below in Section 3.4.

In the final stage of model development , separate model versions were created for the text
and color conditions. Throughout the model development, the focus had been on creating a
model that could handle the more complex text condition, with the rationale that the color
condition was a simpler derivative model. Creating the color model involved changing only the
“Update_situation_awareness” task, since that is the task that figures out what to do. The
interaction tasks did not change. As the CTA indicated that subjects in the color condition
ignore the text displays and focus solely on the color changes, there was only one visual

scanning goal in the color model substituting for the sequence of display region scans in the text
model. This difference is shown in Figure 3-8.
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3.4 Subjective workload assessment

In addition to performing the air traffic control task in a human-like manner (i.e., that fits
control data from human subjects performing the same task), the AMBR model was also
required to provide assessments of various subjective aspects of task performance centering on
the construct of subjective workload. Before discussing how this was accomplished, we offer
some thoughts on the concept of workload, which has been used in a variety of different ways in
the AMBR program as well as in the broader literature.

Workload is sometimes used to describe an input to the task, (e.g., high-workload versus
low-workload scenarios), sometimes as an internal state in the human (or model) that can affect
task performance (e.g., workload-based strategies), and sometimes as an output of the process
(e.g., ratings products by the model/person after task completion). This has contributed to some
conceptual confusion about the denotata of the term. From our perspective, workload is not a
state or a component, but is rather a relationship between an information processing system and
its (complex) environment. As noted earlier in the central COGNET ‘equations’, performance
arises from interaction between the problem/environmental dynamics, and an information
processing system, which contains both internal processing mechanisms and internal expertise.
Each of these contributes to the relationship that can be called workload.

For example, the expertise within the information processing system may be more or less
useful in achieving the system’s goals, given the current state and dynamics of the external
environment. When the expertise is less useful, more internal processing may be needed to
achieve the goal, or only less-than-goal conditions may be achievable. Similarly, the
pace/complexity of the events in the environment may require more internal processing by the
system to achieve/maintain its goals, independent of the usefulness or efficiency of the
underlying knowledge involved. In any case, the amount of momentary internal processing is
driven by this relationship between the information processing system’s goals, expertise, and
processing mechanisms and the current state and dynamics of its internal environment. This
viewpoint helps differentiate the three varying notions of workload noted above, and defines an
approach to the workload subjective self-assessment task.

A given external condition may involve much less processing for an individual with more
expertise than one with less. Thus, workload cannot be, by itself, an input to the task. Similarly,
there is no internal register (at least within the COGNET framework), which reflects the
momentary status of the internal processing system’s workload and adjusts it accordingly.
Rather, the ability of people to adjust their strategy to the dynamics of the internal processing
mechanisms varies from person to person, and is arguably learned. This makes it a matter of
expertise not mechanism, and this kind of expertise is clearly metacognitive, as discussed above
(in 2.4). However, the ability to modulate the usage of expertise according to the status of the
internal information processing system’s dynamics requires some access to this information.
That is, it requires a self-awareness of the status and dynamics of the internal processing
mechanisms. This is also a metacognitive function, as discussed in 2.4. Workload-based strategy
adjustment can thus be interpreted as a cognitive process based on metacognitive knowledge
specific to the AMBR task domain, and dependent on declarative self-awareness of the internal
processing dynamics. This aspect of the process was discussed above (3.2). Workload self-
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assessment, then, is a process of introspectively (and retrospectively) reporting on this self-
awareness information.

The overall approach to generating these introspective retrospective accounts involved four
basic steps. In the first step, the six separate measures quantified by the human subjects were
analyzed and conceptually mapped onto the internal architecture and the Principles of Operation
of the COGNET system. This conceptual mapping was taken further in the next step, as each of
the six measures was then operationalized in terms of specific aspects of metacognitive self-
awareness, whether they existed within BATON or not. Those that did not already exists were
then implemented within BATON (in a third step), and combined with those that had previously
been implemented to allow the self-reporting of the subjective workload assessments required.
This resulted in the ability of the model to introspect and create a post-hoc report of its own
workload on the six measures involved. The scale of those measures was not necessarily the
same as that used by the measurement instrument, i.e., the quasi-interval scales used by the
human subjects. In a fourth and final step, the measures generated by the model were calibrated
to those specific measurement scales. Details of each step are defined below.

3.4.1 Relating TLX Measures to COGNET Constructs

The AMBR moderator had the human subjects provide subjective assessments of six
characteristics of the overall task, based on TLX, NASA's Task Load Index (Hart & Staveland,
1988). These were:

e Physical demand — defined as "how physically demanding was the task"

e Mental demand — defined as "how mentally demanding was the task"

e Temporal demand — defined as "how hurried or rushed was the pace of the task"

e Performance self-estimate — defined as "how successful were you in
. accomplishing what you were asked to do"

e Effort estimate — defined as "how hard did you have to work to accomplish your
level of performance"

e Frustration — defined as "how insecure, discouraged, irritated, and annoyed were
you!i

Each subject provided an estimate of each characteristic on a Likert-like scale divided into 10
intervals, and measured as 21 discrete values (integers 0-10 inclusive plus all intermediate half-
values). Thus, the model had to produce estimates of these same variables on this same scale.
The general theoretical framework for this process was one of relating each measure to the self-
awareness of various aspects of the processing within the COGNET representation, as described
above. The analysis of each measure in terms of COGNET constructs is given below:

Physical demand. This construct was based on self-awareness of the overall level of
activity of the motor system. The AMBR model did not need to declare and monitor
individual motor resources (e.g., separate hands, eye resources, etc.), but rather directed
action to the motor system on these channels using different Perform Action operations.
Each action duration was, in addition, given a duration by a specific micromodel. The
awareness of physical workload is thus accomplished in two stages. First, the system had to -
be aware of (collect) the total time spent in each kind of action (e.g., move mouse, move
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eyes, give verbal message). Second, weights had to be assigned to discriminate low effort
actions (e.g. eye-movements) from high-effort actions. The physical workload value could
then be calculated as the weighted sum of the action times across all actions, normalized to
the length of the scenario.

Mental demand. This construct was based on the self-awareness of the cognitive
complexity of the various tasks being executed and their relative frequency. Mental
workload was estimated separately for each cognitive task in the model. Because tasks can
be carried out in many different ways, the average complexity of each task during the
execution of a scenario is calculated as the average number of goals and method calls during
task execution (including the number of goals and method calls within the higher level
methods called). The task complexity was then multiplied by the number of times the task
was performed in the scenario. This weighted complexity was summed across all tasks, and
normalized to the length of the scenario.

Temporal demand. This is a difficult construct to relate to COGNET internal structure
and dynamics. It was ultimately decided to do so in terms of a complementary construct, the
sense of idleness or momentary sense of 'nothing to do now.' It was felt that the more
frequently the model had such an awareness, the less time-pressure it would feel, and vice
versa. This sense would occur, in model terms, when the model was aware that it had no
'queued' tasks, was scanning the screen for new tracks needing attention, and finding none.
Thus, a self-awareness capability for this 'nothing to do' state was needed, and its negative
value used to measure temporal workload, normalized to the length of the scenario. This use
of negative value is analogous to the well-known use of 'regret' to measure (negative) utility
in decision theory. ‘

Performance. A similar regret-like approach was selected to relate this measure to
COGNET constructs. The model does not have any awareness of how well it is doing or
how it is performing on a positive side, but it does have an awareness of when it makes
errors of omission or commission, because it attempts to correct those error when it becomes
aware of them. Thus, the more errors the model is aware of, the worse its perceived
performance would be, and when it is aware of no errors, its self-perception of its
performance would be very high (whether it would be so empirically or not). The
performance measure was ultimately assigned as the negative value of the count of
perceived errors during a scenario, normalized to the length of the scenario.

Effort. Conceptually, the concept of effort as defined for the human subjects seems to
refer to the total amount of time they spent 'working' in the scenario, possibly excluding or
discounting the visual effort of scanning the display. (Why discount visual scanning?
Although there is no data to confirm or disconfirm this position, it seems likely that a
scenario in which no tracks appeared would be said to have involved 'no effort', even though
the eyes would still scan the screen, at least periodically). In the CGF-COGNET variant of
the BATON architecture, there can be multiple threads of work going on in parallel at any
time, for example hands, voice, and eyes, all with different and potentially overlapping
action start and end times. Because of this parallelism, it would be incorrect to simply sum
all the work times, as many would/could be parallel. Alternatively, the total time in which
some motor action were occurring could be collected as the total amount of 'busy’ time in the
problem. Thus, the reporting of ‘effort’ required an awareness of the states when some
activity was occurring on any motor channel. When divided by the total time of the scenario,
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it would yield a measure of the proportion of time spent working the problem, and thus was
used to report the effort involved in the scenario.

Frustration. This is an extremely ill-defined concept, even to people (as evidence by the
range of emotional states that subjects were told to map into the term 'frustration, and by the
generally low inter-subject correlations on this scale). After considering a number of
aspects of the model and execution architecture, that could be related to one or more of the
terms used in the elicitation frame (i.e., insecurity, discouragement, irritation, annoyance), it
seemed that a simple approach was best. The approach selected is based on an awareness of
the times that a cognitive task is interrupted by another cognitive task. While the nature of
the testbed work is such that interruption is minimized (i.e., because it's HCI provides
limited ability to leave work elements in an interrupted state), there are still opportunities for
this to occur, primarily with visual and/or purely interpretative tasks. Thus, frustration was
simply reported as the number of cognitive task interruptions divided by the length of the
scenario. It is noted, however, that human subjects overall found the text-based version of
the interface more frustrating than the color version, although it is not clear in terms of the
model why this was the case. In-house data collected from human subjects at CHI Systems
further showed that there was a strong sequence effect, in that subjects were much more
frustrated with the text version after having first used the color version. However, since the
design did not allow any knowledge of prior runs to be incorporated into this self-
assessment process, this effect could not be used in producing the model's frustration self-
report. Thus, it was expected that the form of self-reporting selected for this measure would

under-report frustration for the text-only case, an expectation that was borne out by the
empirical data (see below). -

3.4.2 Operationalization of the Measures in BATON Terms

The preceding analysis translated the TLX workload constructs into self-awareness terms
consistent with our underlying representation of subjective workload reporting. This analysis
was next used to develop specific computational operationalizations of the measures within the
BATON cognitive architecture. In this operationalization process, effort was made to (re-)use
various aspects of self-awareness that had already been implemented within:

o the CGF-COGNET version of the BATON sof{ware used to build the AMBR
model and

e other variants of BATON, particularly the ORGNET variant being created to
support analysis and allocation of cognitive functions across multiple human
and/or computational agents in a complex task environment (see Weiland and

. Eilbert, 2000; Weiland, Zachary, and Le Mentec, 1998; Zachary, Weiland, and Le
. Mentec, 1997)

H
* When this was not possible, new CEL operators were defined as needed to provide explicit self-
awareness of specific model states (such as awareness of having made an error. In some cases,
as noted below, it was also necessary to define additional instrumentation of BATON to create

specific types of self-awareness of physical actions (either motor actions or dehberatlve
perceptual actions).

The specific formula developed for producing each individual workload measure is provided
in Table 3-4. The table uses the following elements of notation:
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The symbol TS in all cases refers to the length (in time) of the scenario.

The functions that are in capital letters are self-awareness measures taken from

the ORGNET version of BATON.

The variables in italics represent new CEL operators that will be used to measure
individual events, such as awareness that an error has occurred, or new
instrumentation inserted into BATON to quantify a specific aspect of the system's

execution.

3.4.3 Implementation of Measures in BATON

The implementation of the six subjective workload measures defined in Table 3-4 was done
using the existing metacognitive functionality in the BATON software, specifically the
metacognitive self-awareness blackboard panel. In addition to the instrumentation of the

Table 3-4. BATON Operationalization of AMBR Workload Measures

Measure

Computational Formula

Operationalization

Physical

(. ki * action-time;)/Ts

Where i is an action type, k;is the weight of
that action type, and action-time; is a
function which collects total time spent
taking that action during a scenario by
instrumenting the action mechanism

Mental

(a;i DPC, i DTT,)/TS

Where i is a cognitive task, and DPC;and
DTT,are ORGNET measures

Temporal

~(3 nothing-to-do,)/Ts

Where nothing-to-do,is a CEL operator that
returns a value of one iff the visual scan
task has been completed and the model
found nothing to do

Performance

~(%. error-detected,)/Ts

Where error-detected,is a CEL operator
that returns a value of one iff a cognitive
task found that the model had made an
error and was about to try to correct it (if
correctable)

Effort

(3 time-spent-in-work,)/Ts

Where i is an increment in time, and time-
spent-in-work,is a function which measures
the time within that increment in which
motor activity is occurring on any
execution thread by instrumenting the
action mechanism

Frustration

(. DTL)/Ts

Where DTI, is the ORGNET measure of
the number of times cognitive task i was
interrupted during the scenario
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information processing mechanisms that make up the CGF-COGNET version of BATON,
several self-awareness measures were integrated from the ORGNET variant of the system.
These were:

e DPC — a measure of the Dynamic Procedural Complexity of a task, it essentially
counts the number of GOALs, DETERMINE operations and CALCULATE
operations that are actually executed within a given problem-instance (i.e.,
scenario). For AMBR, the DPC measure was extended to incorporate all the
GOALSs, DETERMINE operations and CALCULATE operations that were
executed as part of METHODS that were invoked during execution of any
instance of the task as well.

e DTT - a measure of Dynamic Task frequency, it counts the number of times the
task is actually executed in a given problem-instance.

e DTI - a measure of Dynamic Task Interruption, it counts the number of times that
.a given task has been interrupted, while executing, by other tasks.

The integration of these measures made the information they collect part of the system’s
self-awareness on the metacognitive blackboard.

Two additional CEL operators also had to be created. These were

e ‘error-detected’ — this is an operator that, when executed, places an awareness that
the model has made an error of some sort onto the metacognitive blackboard;

¢ ‘nothing-to-do’ — this is an operator that, when executed, places an awareness
onto the metacognitive blackboard that the model has found nothing to do (other
than scan). ~

Creation of CEL operators is a relatively simple process given the design of the BATON
software, requiring usually less than an hour to define and recompile into the software. The
above are both metacognitive operators that placed an awareness of the named condition on the
metacognitive blackboard, based on where it was encountered and executed. Once created, the
operators had to be added to the expertise model in the appropriate locations. The new-operator
creation process automatically integrates the new operator into the CGR interface, making
insertion of the new operators a straightforward ‘point and click’ operation.

Finally, two new types of instrumentation of the BATON mechanism had to be created.
These two new types of cognitive proprioception were:

e ‘time spent in work’ — an instrumentation of the scheduling mechanism that
collects the total amount of time during which time was being consumed (via a
- Spend-Time operator), on any thread of activity within the system;

e ‘action time’ — an instrumentation of the motor action mechanism that collects,
‘ for a specific action type, the total amount of time during which time was spent
performing that action via a Spend-Time operator.

Developing this functionality involved relatively small amounts of effort as well. As
discussed in the conclusions, a total of 3% of the project effort was expended in all the
modifications to BATON made in the effort. This total includes the integration of the ORGNET

51




measures, creation of the new CEL operators, and creation of the new cognitive proprioception
functions, as well as their testing and debugging.

3.4.4 Calibrating the Measures to the TLX Scale

It should be clear that the formulae in Table 3-4, while arguably measuring the various self-
perceptions collected in AMBR, do not do so on the same Likert-like scale used by the human
subjects. In addition, the values generated by the model were not inherently tuned to the relative
differences in the judgements made by the human subjects. Thus, the final step in implementing
the measures in Table 3-4 was a calibration process that dealt with these two issues.

Each subject in the initial tuning data set provided an assessment on each of the six
subjective factors for six different scenarios. For each given factor and scenario i there was then
a vector of j subject values x; on the scale for that factor, and a statistic X; which represents the
mean value of the x; for scenario j. For each of those same six scenarios, the model was able to
produce a value y; for the same factor, using the relevant measure from Table 3-4. This yielded a
set ordered pairs (X,y;), representing the model's assessment and average subject assessment for
that factor on scenario i. However, the y; represent values on an open-ended ratio scale, while the
X; represent interval values on a closed-ended scale. To map the first into the second, a
regression was done to calculate the X; as a function of the y;. This regression process yielded a
linear function which then stated how the y; could be transformed, once calculated, to yield a
calibrated measure on the same scale used by the human subjects. If this function is written
F(Y), then the final value of the model's measure for factor i is defined as:

F(Y) if in the interval [0,10],
0if F(Y) <0, and
10 if F(Y)>10.

The resulting equations are shown in Table 3-5. In each line of the table, the directly
generated measure is named in capitals (e.g., EFFORT), and the calibrated measure is shown
with an asterisk (e.g., EFFORT*)

Table 3-5. Calibration formula for AMBR Workload Measures

Measure Calibration Formula

Physical demand (PHYSICAL) PHYSICAL* =9.1949*PHYSICAL + .7955
Mental dema]'nd (MENTAL) MENTAL* = 7.9385*MENTAL+ .5032
Temporal Démand (TEMPORAL) TEMPORAL* = -7.9865* TEMPORAL + 6.7737
Performance (PERFORM) PERFORM* = 380.8318*PERFORM + .7606
Effort (EFFORT) EFFORT* = 4.6704*EFFORT + 1.2269
Frustration (FRUSTRATE) FRUSTRATE* = .1703* FRUSTRATE - .7498
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3.4.5 Workload Assessment Results

The COGNET/iGEN™ model was the only model to generate subjective self-assessments
for all six of the individual workload measures used by the human subjects. As a result, the
models were compared at the model comparison ‘fly-off’ only in terms of a single composite
workload self-assessment score. In the case of the COGNET/iGEN™ model, this was obtained
simply by averaging the six individual scores to yield an overall workload score.

However, because the individual workload scores were calculated by the COGNET/iGEN™
model, it is possible to compare them individually to the human subject scores as well. The
comparisons with ‘fly-off” subject data are shown below in Figures 3-9 through 3-14. In general
they show a good fit with the human data, increasing from low-load to high-load problems. The
model appears to generally view the aided (i.e., color) condition as less demanding than the
unaided (i.e., text-only) condition, but less so than the human subjects who often saw even the
highest track-load scenario with the color condition as involving less workload than the lowest
workload text condition. The expected divergence appeared with the frustration measure, as the
model did not find the text condition as frustrating as the human subjects did. This was further
complicated by the fact that the model, for some reason, found the intermediate track load
problem more frustrating than the high-track-load problem for the unaided condition.

One additional methodological remark is offered here concerning the calibration process.
Due to the time schedule of the project, the calibration process was done in only two iterations.
That is, an initial calibration was done, and then parameters in the workload prediction parts of
the model (e.g. the weights of the action types the physical demand measure) were revised. It is
likely that given a few additional iterations a much tighter fit with the human subjects'
assessments could have been obtained. At the same time, it is not clear that there would have
been much value in doing so beyond the simple statistical exercise. The human subject data
showed substantial inter-subject variability, and the two samples also showed substantial
variability. Thus, the divergence that the COGNET model showed with reference to the
aggregate human responses is probably indicative of the general variability that any individual
would have shown when compared to group means.

4. MODEL RESULTS AND EVALUATION

4.1 Model results

A separate report from BBN presents the data comparing model performance to human
performance. Results will be summarized here. The human data used as the point of comparison
is generated from 16 subjects. Eight of the subjects were tuning subjects, and these data were
provided to modelers during model development as input data for model tuning. The other group
of eight was fly-off subjects. As there seemed to be some differences between the subjects in the
two groups, all 16 subjects’ data were used for the comparison. Means and standard errors were
computed for the human data for each of the six conditions (color-low WL, color-medium WL,
color-high WL, text-low WL, text-medium WL, text-high WL). The primary comparisons were
for overall performance for each condition, response time across all types of action with no

intervening items, and subjective workload (averaged across the six subjective workload
measures).
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Figure 3-11. Model versus Human Subjects on Temporal Demand Measure
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The CHI model (of a single generic individual) made no errors on any color condition, and
the number of penalty points increased in the text condition as a function of workload. These
trends were very similar to the human subject data, although some human subjects made a few
errors in one or more color conditions and they averaged 20 penalty points on the text-low
condition, while the CHI model made no errors in that condition. Response times produced by
the CHI model were comparable to the human subject data. For both the CHI model and human

subjects, response times were slightly higher for all the text conditions than for all the color
conditions.

Workload data has been discussed in detail in Section 3.4. Using aggregate workload

- ratings, the CHI model produces the same pattern of ratings as the human subjects, in that

subjective workload increases with workload and the color condition is viewed as less
demanding than the text condition. The CHI model tended to underestimate the difference in
subjective workload between color and text conditions when compared to human subjects.

In general, the COGNET model generated results that corresponded well to human data.

~ Although there were a few cases for which the CHI model generated a behavior that was just

outside the standard error for the mean of the human subjects, the model behavior was well
within the range of individual human behavior for a given condition.

4.2 Development process evaluation

COGNET was originally a competence-based cognitive architecture developed primarily for
the purpose of supporting the development of decision aids for human-computer systems. It did
not originally include any considerations of processing limitations, action or operation time, or
error. Within the last two years, under another effort, it was modified into a human performance
architecture, to allow better development of CGF models.

The AMBR ATC model was the first completed application using the CGF-COGNET human
performance architecture. No changes to the human performance architecture were necessary to

deal with the ATC-like problem. However, specific operators were added to calculate various
subjective workload measures.

Two capabilities of the architecture were not exploited due to practical considerations: 1)
sensory/motor modeling at a low level of granularity and 2) modeling individual differences to
generate a range of performance rather than a single instance. Sensory/motor modeling at a low
level of granularity could have included an eye /vision model with individual eye movement
actions and accompanying micromodels, point-of-regard-based object perception, and eye
movement strategies. It also could have included a hand model and elementary hand movement
micromodels. It is not clear that low-level sensory/motor modeling would have improved the
predictive value or generalizability of the model.

For the ATC task, we created a model of a generic individual performing the task. As it was
developed, the model is not able to generate a range of performance representing the range of
individual behavior expected. Such a capability could be useful in a CGF application or in a
system design analysis. Stochastic error generation could be added fairly easily. Incorporating

multiple strategies invoked probabilistically to represent individual difference could be done, but
would require greater effort.



As mentioned in Section 3.2.7 above, our model incorporated only one error type of the
'many that human subjects might exhibit. Limited error modeling was a pragmatic decision that
obviated the need to include various error recovery strategies in the model. The model linked
error inducement to taskload above a certain level yielding a realistic error generation algorithm.
Also, since this error had a ripple effect, the model was able to produce human-like performance
without a large effort in this area. However, the lack of a rich model of error generation might
make the model less generalizable to other, even similar, tasks.

4.3 Competition process evaluation

Since the impetus for the AMBR model competition was the National Research Council
study (Pew & Mavor, 1998) on human performance modeling capabilities, the model
competition process should be evaluated in terms of the needs addressed in that study. That is,
there is a need for greater realism with respect to observable outcomes for military simulations
and computer generated forces. Thus, the goals of improving realism of outcome and improving
utility for military simulations should be the ultimate measures of effectiveness by which the
process is judged.

One issue is whether the results of the simplified ATC task generalize to more complex
military tasks. Obviously, using a real military task would have increased the cost of the
program beyond the available funds and was not a practical solution. However, a middle ground
of a more complex synthetic task with a greater cognitive component would be more likely to
yield generalizable results and still be a manageable modeling problem.

Another area involves model assessment procedures. First, the model purpose and
assessment measures (measures of effectiveness) should be defined before the model
development begins, so that the models are developed with the assessment measures in mind.
Second, the model comparison process should, as much as possible, stress comparison within the
definition of model coverage and purpose defined. In the case of the completed competition, a
new scenario and workload level meeting the criteria set forth would have been a stronger test of
the models.

5. CONCLUSIONS

COGNET was created over the past 15 years as a method or framework for building specific
models of human information processing for a range of practical purposes. It is an example of
applied cognitive psychology in the tradition of Card, Moran and Newell (1983) in that the goal
is to transition cognitive science to tools and techniques that can be applied to real-world human-
system problems. The COGNET architecture was based on psychological theory in human
cognitive processing and development of expertise, and the mechanisms incorporated built on
previous cognitive modeling and artificial intelligence research.

Specifically, the COGNET cognitive architecture is based on the modified stage theory of
human information processing. COGNET incorporates distinct but interdependent declarative
and procedural knowledge representations. On the procedural side it supports hierarchical
goal/subgoal/operation procedural knowledge structures, integration of cognitive and behavioral
operations, and context-sensitive modification of strategies based on declarative knowledge
content. On the declarative side, it allows the notion of mental model, or other domain-specific
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expert constructs to be incorporated. Attention management is an emergent property of the
architecture and Principles of Operation, supporting multi-tasking easily and naturally. ‘The
more recently developed CGF variant of COGNET provides metacognition mechanisms and
allows a model to be aware of its own processes and states. This cognitive proprioception
allows decisioﬂ-making and performance to be modified based on the state of cognitive

processing. These mechamsms were used in our ATC model to drive taskload based strategies
and error generation.

Subprocess theories are not an integral part of COGNET. Furthermore, no set level of
modeling granularity is required, allowing adaptation to the modeling geal. Since the
architecture itself is theory-neutral with respect to subprocess models, various theories could be

implemented as relevant. However, the mechanisms for representmg low-level processes must
be built for the specific modeling application.

COGNET does not include any specific memory models. There is no explicit mechanism for
decay or forgetting. Such effects can be emulated if needed for a particular application. At the
present time COGNET does not have any mechanism for 1eaming, although we are considering
methods for incorporating learning in the near future.

iGEN™ is a COTS product for developing and running COGNET expertise models. It
includes graphical authoring tools and debugging tools, as well as a facility for compiling
standalone models that can be embedded within a larger software system. As a commercial
system, there are accompanying courses, manuals, and support. In addition to a stable
commercial version, various versions of iGEN™ can coexist to support research extensions for
accommodating new modeling demands, such as metacognition or micromodels for human

performance modeling. New features that are of general interest can then be incorporated in the
COTS product.
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